A Practical Guide to Rock Microstructure

Rock microstructures provide clues for the interpretation of rock history. A good understanding of the physical or structural relationships of minerals and rocks is essential for making the most of more detailed chemical and isotopic analyses of minerals.

Ron Vernon discusses the basic processes responsible for the wide variety of microstructures in igneous, sedimentary, metamorphic and deformed rocks, using high-quality colour illustrations. He discusses potential complications of interpretation, emphasizing pitfalls, and focusing on the latest techniques and approaches.Opaque minerals (sulphides and oxides) are referred to where appropriate. The comprehensive list of relevant references will be useful for advanced students wishing to delve more deeply into problems of rock microstructure.

Senior undergraduate and graduate students of mineralogy, petrology and structural geology will find this book essential reading, and it will also be of interest to students of materials science.

Ron Vernon is Emeritus Professor of Geology at Macquarie University, Conjoint Professor of Geology at the University of Newcastle and Research Professor at the University of Southern California. He has taught undergraduate geology courses in Australia and Italy, as well as graduate courses and workshops in the USA, Italy, Germany, Finland and Mexico.

He has written two books, *Metamorphic Processes* (1976) and *Beneath Our Feet* (2000). The latter provides a clear and enthusiastic introduction to rocks for the non-geologist.
A Practical Guide to Rock Microstructure

Ron H. Vernon
Department of Earth and Planetary Sciences, Macquarie University, Sydney
For Katie
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>List of mineral symbols used in this book</td>
<td>ix, xi</td>
</tr>
<tr>
<td>1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>History of the examination of rocks with the microscope</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>How relevant is the microscope today?</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Mineral identification</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>The concept of a section</td>
<td>3</td>
</tr>
<tr>
<td>1.6</td>
<td>Newer techniques</td>
<td>3</td>
</tr>
<tr>
<td>1.7</td>
<td>Quantitative approaches</td>
<td>6</td>
</tr>
<tr>
<td>1.8</td>
<td>Some terms</td>
<td>7</td>
</tr>
<tr>
<td>1.9</td>
<td>Traditional rock groupings</td>
<td>7</td>
</tr>
<tr>
<td>1.10</td>
<td>Importance of evidence</td>
<td>8</td>
</tr>
<tr>
<td>1.11</td>
<td>Kinds of evidence used</td>
<td>10</td>
</tr>
<tr>
<td>1.12</td>
<td>Complexity</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Microstructures of sedimentary rocks</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Epiclastic (‘terrigenous’) sedimentary rocks</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Pyroclastic sedimentary rocks</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Organic and bioclastic sedimentary rocks</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical sedimentary rocks</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Microstructures of igneous rocks</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Structure of silicate melts and glasses</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Crystallization (freezing) of magma: nucleation and growth</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Grainsize in igneous rocks</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>Grain shapes in igneous rocks</td>
<td>69</td>
</tr>
<tr>
<td>3.6</td>
<td>Order of crystallization in igneous rocks</td>
<td>102</td>
</tr>
<tr>
<td>3.7</td>
<td>Distribution of minerals in igneous rocks</td>
<td>109</td>
</tr>
<tr>
<td>3.8</td>
<td>Mineral intergrowths in igneous rocks</td>
<td>115</td>
</tr>
<tr>
<td>3.9</td>
<td>Magmatic flow</td>
<td>119</td>
</tr>
</tbody>
</table>
3.10 Enclaves in igneous rocks 124
3.11 Compositional zoning in igneous minerals 135
3.12 Growth twinning in crystals in igneous rocks 150
3.13 Embayments 152
3.14 Microstructures formed by boiling (vesiculation) of magma 157
3.15 Liquid unmixing in magma 165

4 Microstructures of metamorphic rocks 169
4.1 Introduction 169
4.2 Processes controlling grain shapes in metamorphic rocks 172
4.3 Grainsize and porphyroblasts 194
4.4 Effect of fluids on crystal faces in metamorphic rocks 212
4.5 Elongate and dendritic crystals in metamorphic rocks 221
4.6 Solid-state effects in slowly cooled igneous rocks 224
4.7 Growth twinning in metamorphic minerals 228
4.8 Transformation twinning 233
4.9 Exsolution 235
4.10 Symplectic intergrowths 242
4.11 Modification of deformation twins, exsolution lamellae and other intergrowths 254
4.12 Compositional zoning in metamorphic minerals 257
4.13 Criteria for inferring metamorphic reactions 268
4.14 Distribution of minerals in metamorphic rocks 277
4.15 Residual microstructures in metamorphic rocks 279
4.16 Microstructures formed by melting of solid rocks 284

5 Microstructures of deformed rocks 295
5.1 Introduction 295
5.2 Experimental evidence 296
5.3 Deformation mechanisms 298
5.4 Recovery and recrystallization 323
5.5 Deformation of polynuclear aggregates 348
5.6 Metamorphic reactions during deformation 353
5.7 Deformation partitioning 359
5.8 Foliations and lineations 388
5.9 Fluid and mass transfer in deforming rocks 402
5.10 Porphyroblast–matrix microstructural relationships during deformation 419
5.11 Deformation of partly melted rocks 456
5.12 Deformation in Earth's mantle 469

Glossary of microstructural and related terms 475
References 495
Index 579
Preface

Learning about rocks can give much pleasure to anyone interested in Earth and its development. I hope that readers of this book will share my enthusiasm for examining rocks with the microscope. I planned the book to be an introductory review of the main processes responsible for the microstructures of Earth rocks. However, I soon realized that if I did that, the book would be a collection of half-truths, with little scientific value. Though many rock microstructures are understood fairly well, the interpretation of many others involves considerable controversy, and new ideas are being published all the time. So, I have felt compelled to mention problems of interpretation and to present alternative views, where appropriate. Thus, the book has evolved into (1) a basic explanation of the main processes, (2) an introduction to more complex issues of interpretation and especially to the relevant literature, and (3) an outline of modern approaches and techniques, in order to emphasize the ongoing, dynamic nature of the study of rock microstructure. Because complicated problems cannot be discussed in detail in a book of this kind, I have tried to provide a sufficient number of references to enable the reader to delve more deeply.

I assume that the reader has a basic knowledge of geology, rock types and microscopic mineral identification. Thus, the book is aimed mainly at senior geoscience undergraduates and above. Emphasis is placed on higher-temperature processes, i.e. those that occur under igneous and metamorphic conditions, although the book begins with a brief discussion of sedimentary microstructures, as background for some of the metamorphic microstructures. The mineral abbreviations used follow those suggested by Kretz (1983), as extended by Bucher & Frey (1994), and are listed at the start of the book. There is an extensive glossary of microstructural terms at the end of the book.

I also hope that materials scientists may also gain some benefit and interest from the microstructures discussed and illustrated, because rocks are the ‘materials’ of Planet Earth, in the sense of ‘materials science’: the branch of science that links all solid materials, such as metals, ceramics, glass, organic polymers and, of course, rocks.

I took all the photographs, except where otherwise acknowledged. I am also responsible for most of the line drawings, with the assistance of Dean Oliver.
Preface

(Figs. 5.11, 5.37) and Daleth Foster (Fig. 5.93). I thank David Durney, Dick Flood, Scott Johnson and Scott Paterson for critically reading parts of the typescript, Judy Davis for assistance with computer techniques, Geoff Clarke for access to specimens at the University of Sydney, Ross Both, John Fitz Gerald and Neil Mancktelow for providing images, and John Lusk, John Ridley, David Durney and Pat Conaghan for providing specimens of opaque minerals, deformed rocks/veins and sedimentary rocks at Macquarie University. People who kindly provided other samples or thin sections are acknowledged in the figure captions.
Mineral symbols used in this book

Ab albite
Act actinolite
Alm almandine
Als aluminosilicate
Am amphibole
An anorthite
And andalusite
Apy arsenopyrite
Bt biotite
Cal calcite
Ccp chalcopyrite
Chl chlorite
Chr chromite
Cld chloritoid
Cpx clinopyroxene
Crd cordierite
Crn corundum
Cv covellite
Czo clinozoisite
Dol dolomite
Ep epidote
Gln glaucophane
Gn galena
Gr graphite
Grs grossular
Grt garnet
Hbl hornblende
Ilm ilmenite
Kfs K-feldspar
Ky kyanite
List of mineral symbols used in this book

- Lws for lawsonite
- Mag for magnetite
- Ms for muscovite
- Ne for nepheline
- Ol for olivine
- Omp for omphacite
- Opx for orthopyroxene
- Or for orthoclase
- Pgt for pigeonite
- Phl for phlogopite
- Pl for plagioclase
- Prh for prehnite
- Py for pyrite
- Qtz for quartz
- Rt for rutile
- Scp for scapolite
- Ser for sericite
- Sil for sillimanite
- Sp for sphalerite
- Sp1 for spinel
- Spr for sapphirine
- Sps for spessartine
- Srp for serpentine
- St for staurolite
- Stp for stilpnomelane
- Tcl for talc
- Toz for topaz
- Tr for tremolite
- Tmn for titanite (sphene)
- Tur for tourmaline
- Wo for wollastonite
- Zo for zoisite
- Zrn for zircon