The fascia, with both its macroscopic and microscopic structure, is the map that can help to orientate any research into the origin of locomotor apparatus disorders. This book, which is the outcome of thousands of treatments carried out over the last twenty-five years, provides the necessary guidelines for reading this map. Up until now, perhaps due to its intrinsic complexity, the role of the fascia has been relegated to that of containment.

The book illustrates:
- The connections of the fascia with muscles, bones, articulations, and nerves (anatomy of the fascia)
- The coordinating function of the fascia with regards to all components of the locomotor apparatus (physiology of the fascia)
- The way to manipulate densified or condensed fascia in order to restore it to its physiological state (treatment of the fascia).

This new vision of the anatomy, physiology and histology of the fascia allows one to have an effect on soft tissue dysfunctions in an efficient and long-lasting manner.

Fascial Manipulation analyses muscles from a functional viewpoint rather than from their external structure:
- It assembles unidirectional motor units (mono and biarticular fibres) into myofascial units
- It describes the precise location of the centre of coordination (CC) of each myofascial unit
- It highlights the correspondence that exists between each CC and the respective trigger points and acupuncture points of each muscle.

In the first part of this book the relationship of the endomysium, perimysium and epimysium with the deep fascia is analysed; this analysis is extended to all of the 84 myofascial units (mf) in the human body. It is the continuity of the fascia that regulates and coordinates the tensioning of the muscles spindles and Golgi tendon organs located within each of these mf units.

In the second part the macroscopic structure of the fascia is analysed. The intermuscular septa form compartments that surround the unidirectional muscular chains or myofascial sequences. The mf sequences that control movement on one spatial plane are all connected together by the fascia, allowing for synchronised maintenance of the body’s verticality.

The third part of the book highlights the arrangement of the endofascial collagen fibres. There are longitudinal fibres arranged according to the traction of the mf sequences as well as spiral form fibres, which have assumed this type of arrangement due to traction of the oblique muscle fibres involved in complex motor activities.

This volume not only presents an in-depth analysis of the fascia but also offers useful indications for identifying the origin of its dysfunctions. A particular method of data collection that can provide immediate indications of the points to be manipulated is proposed.

If pain is present in only one body segment then identification of the exact part of the joint where the disorder is manifest will indicate the dysfunctional mf unit.

If pain is present in a number of segments and analysis demonstrates that their distribution corresponds to a particular spatial plane, then treatment aims at re-equilibrating postural alignment.

If the pain is poorly defined and exacerbated by complex motor activity, then the particular mf spiral, which is dysfunctional during that specific motor activity or gesture, is identified and treated.

These innovative theories are supported by many citations from anatomical texts in order to highlight the marvellous structural design that exists within the fascial system.