<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
</table>

Preface xxxi
Contributors xxxiii

1. Molecular and Biochemical Toxicology: Definition and Scope 1
 Ernest Hodgson and Robert C. Smart
 1.1 Introduction 1
 1.2 Toxicology 2
 1.3 Biochemical Toxicology 2
 1.4 Cellular Toxicology 3
 1.5 Molecular Toxicology 3
 1.6 Proteomics and Metabolomics 4
 1.7 Conclusions 4
 Suggested Reading 4

2. Overview of Molecular Techniques in Toxicology: Genes and Transgenes 5
 Robert C. Smart
 2.1 Applicability of Molecular Techniques to Toxicology 5
 2.2 Overview of the Genetic Code and Flow of Genetic Information 6
 2.3 Molecular Cloning 8
 2.3.1 Vectors 9
 2.3.2 Identification of Bacterial Colonies that Contain Recombinant DNA 9
 2.3.3 Construction of cDNA Library 11
 2.4 Southern and Northern Blot Analyses 13
 2.5 Polymerase Chain Reaction (PCR) 14
 2.6 Some Methods to Evaluate Gene Expression and Regulation 15
 2.6.1 Northern Analysis 15
 2.6.2 Nuclear Run-On 15
 2.6.3 Promoter Deletion Analysis/Reporter Gene Assays 16
 2.6.4 Microarrays 16
 2.6.5 Reverse Transcriptase-PCR (RT-PCR) and Real-Time PCR 17
 2.6.6 RNase Protection (RPA) 18
 2.6.7 Electrophoretic Mobility Shift Assay (EMSA) 18
2.7 Methods to Evaluate Gene Function 18

2.7.1 Eukaryotic Expression Systems 18

2.7.2 Transgenic Mice 20

2.7.2a Procedure for Making Transgenic Mice Using Zygote Injection 20

2.7.2b Procedure for Making Knockout Mice Using Embryonic Stem Cells 21

2.7.2c Conditional Knockout 22

2.7.2d Cre-loxP Recombination System 22

Suggested Reading 23

3. Toxicogenomics 25

Marjorie F. Oleksiak

3.1 Introduction 25

3.2 A Primer of Genomics 26

3.3 Tools and Approaches 29

3.4 Genomes 30

3.5 Functional Genomics 31

3.5.1 Microarrays 31

3.5.1a Wet and Dry Lab Procedures 33

3.5.1b Expression Profiling 37

3.5.2 DNA Arrays 37

3.5.2a Comparative Genomic Hybridizations 38

3.5.2b SNP Discovery 38

3.5.2c ChIP on Chip 38

3.6 Conclusions 38

Suggested Reading 39

4. Proteomics 41

B. Alex Merrick

4.1 Introduction to Proteomics 41

4.1.1 Attributes of Proteins 41

4.1.2 History of Proteomics 42

4.2 Properties of Proteins 44

4.2.1 Posttranslational Modifications 44

4.2.2 Mass and Charge 44

4.3 Fields of Proteomic Research 46

4.4 Mass Spectrometers and Protein Identification 46

4.4.1 Ionization Sources 47

4.4.2 MALDI-TOF and Peptide Fingerprints 47

4.4.3 ESI-MS/MS, LC-MS/MS, and Sequence Tags 49

4.4.4 Mass Spectrometers: Three Components 50

4.4.5 Mass Analyzers 51

4.5 Proteomic Platforms 52

4.5.1 Two-Dimensional Gel Separation or DIGE and Mass Spectrometry 52
4.5.2 MudPIT 54
4.5.3 ICAT, SILAC, iTRAQ 56
4.5.4 Retentate Chromatography Mass Spectrometry (RC-MS) 59
4.5.5 Antibody Arrays 62
4.5.6 Advantages and Disadvantages of Proteomic Platforms 64

4.6 Proteomes and Subproteomes: Expectations and Reality 65

4.7 Summary 65
Suggested Reading 66

5. Metabolomics 67
Nigel Deighton

5.1 Introduction 67
5.1.1 Definitions 67
5.1.2 Nonbiased Approaches in Metabolomics 68
5.1.3 Pipelined Approaches in Metabolomics 69

5.2 Methods 69
5.2.1 Mass Spectrometry 70
5.2.1a Ionization 70
5.2.1b Mass Selection and Ion Detection 71
5.2.2 Nuclear Magnetic Resonance Spectroscopy 71
5.2.2a Theory 71
5.2.2b The NMR Spectrum 73
5.2.3 NMR and Metabolomics 74

5.3 Diagnostics and Functional Genomics 75
5.3.1 Metabolomics in Diagnostics 75
5.3.2 Metabolomics in Functional Genomics 76

5.4 Metabolomics and Toxicology 76
5.4.1 Attrition Rates of Drugs 77
5.4.2 Mode of Action of Toxicants 78

Suggested Reading 78

6. Bioinformatics 81
Eric A. Stone and Dahlia M. Nielsen

6.1 Introduction 81
6.1.1 Introduction to Biological Sequence Analysis 81

6.2 Obtaining the Genbank Record of a Known Gene 82

6.3 Sequence Comparison 84
6.3.1 Homology 84
6.3.2 Pairwise Sequence Alignment 85
6.3.3 Evaluating Sequence Alignments 87
6.3.4 Finding the Optimal Alignment 88
6.3.5 Local and Global Alignment 89
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.6 Alignments for Sequence Comparison</td>
<td>90</td>
</tr>
<tr>
<td>6.4 Database Searching with BLAST</td>
<td>90</td>
</tr>
<tr>
<td>6.4.1 The BLAST Algorithm</td>
<td>91</td>
</tr>
<tr>
<td>6.4.2 BLAST Statistics</td>
<td>92</td>
</tr>
<tr>
<td>6.4.3 A BLAST Example</td>
<td>93</td>
</tr>
<tr>
<td>6.5 Extensions to Multiple Sequences</td>
<td>95</td>
</tr>
<tr>
<td>6.5.1 Regular Expressions</td>
<td>95</td>
</tr>
<tr>
<td>6.5.2 Position-Specific Scoring Matrices</td>
<td>96</td>
</tr>
<tr>
<td>6.5.3 Contrasting Summaries</td>
<td>97</td>
</tr>
<tr>
<td>6.6 Genetic Mapping</td>
<td>97</td>
</tr>
<tr>
<td>6.6.1 Background Principles</td>
<td>97</td>
</tr>
<tr>
<td>6.6.1a Recombination</td>
<td>98</td>
</tr>
<tr>
<td>6.6.1b Genetic Markers</td>
<td>98</td>
</tr>
<tr>
<td>6.6.1c Recombination as a Measure of Distance</td>
<td>99</td>
</tr>
<tr>
<td>6.6.2 Linkage Analysis</td>
<td>99</td>
</tr>
<tr>
<td>6.6.2a Human Pedigrees</td>
<td>99</td>
</tr>
<tr>
<td>6.6.2b Inbred Line Crosses</td>
<td>100</td>
</tr>
<tr>
<td>6.6.3 Association Mapping</td>
<td>101</td>
</tr>
<tr>
<td>6.6.3a Linkage Disequilibrium</td>
<td>102</td>
</tr>
<tr>
<td>6.6.3b Using Linkage Disequilibrium to Map Genes</td>
<td>103</td>
</tr>
<tr>
<td>6.6.3c Case–Control Tests</td>
<td>103</td>
</tr>
<tr>
<td>6.6.3d Transmission–Disequilibrium-Type Tests</td>
<td>104</td>
</tr>
<tr>
<td>6.6.4 Environmental Factors in Gene Mapping</td>
<td>104</td>
</tr>
<tr>
<td>6.7 Conclusion</td>
<td>106</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>106</td>
</tr>
<tr>
<td>7. Immunochemical Techniques in Toxicology</td>
<td>109</td>
</tr>
<tr>
<td>Gerald A. LeBlanc</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>109</td>
</tr>
<tr>
<td>7.2 Definitions</td>
<td>109</td>
</tr>
<tr>
<td>7.3 Immunogens and Antigens</td>
<td>110</td>
</tr>
<tr>
<td>7.4 Polyclonal Antibodies</td>
<td>111</td>
</tr>
<tr>
<td>7.4.1 Polyclonal Antibody Production</td>
<td>111</td>
</tr>
<tr>
<td>7.4.1a Immunogen Preparation</td>
<td>111</td>
</tr>
<tr>
<td>7.4.1b Immunization</td>
<td>112</td>
</tr>
<tr>
<td>7.4.1c Serum Collection and Screening for Antibody Titer</td>
<td>113</td>
</tr>
<tr>
<td>7.5 Monoclonal Antibodies</td>
<td>114</td>
</tr>
<tr>
<td>7.5.1 Monoclonal Antibody Production</td>
<td>114</td>
</tr>
<tr>
<td>7.6 Immunoassays</td>
<td>116</td>
</tr>
<tr>
<td>7.6.1 Immunohistochemistry</td>
<td>116</td>
</tr>
<tr>
<td>7.6.2 Immunoaffinity Purification</td>
<td>117</td>
</tr>
<tr>
<td>7.6.3 Immunoprecipitation</td>
<td>117</td>
</tr>
</tbody>
</table>
7.6.4 Immunoblotting (Western Blotting) 119
7.6.5 Radioimmunoassay 120
7.6.6 Enzyme-Linked Immunosorbant Assay 122
7.6.7 Immunochemical Flow Cytometry 126
7.6.8 Detection of Toxicant–Biomolecule Adducts 126

7.7 Conclusions 127
Suggested Reading 127

8. Cellular Techniques 129
 Sharon A. Meyer

8.1 Introduction 129
8.2 Cellular Studies in Intact Tissue 130
 8.2.1 Whole Animal Studies 130
 8.2.2 Tissue Slices 131
 8.2.3 Reconstructed/Bioengineered Tissue 131
8.3 Studies with Dispersed, Isolated Cells 131
 8.3.1 Tissue Digestion and Cell Separation 132
 8.3.2 Limited Maintenance in Defined Media 134
 8.3.3 Long-Term Suspension Culture 134
8.4 Monolayer Cell Culture 135
 8.4.1 Propagation of Primary and Passaged Cultures 135
 8.4.2 Immortalized Cells 136
 8.4.3 Modifications to Monolayer Cell Culture 137
 8.4.4 Stem Cell Cultures 139
8.5 Observation of Cultured Cells 139
8.6 Indicators of Toxicity 140
 8.6.1 Intact Tissue 140
 8.6.2 Cell Culture 140
8.7 Artifacts and Confounders 142
8.8 Replacement of Animal Testing with Cell Culture Models 143
8.9 Conclusions 144
Suggested Reading 145

9. Structure, Mechanism, and Regulation of Cytochromes P450 147
 Darryl C. Zeldin and John M. Seubert

9.1 Introduction 147
9.2 Complexity of the Cytochrome P450 Gene Superfamily 148
 9.2.1 CYP Gene Families and Subfamilies 148
 9.2.2 Pseudogenes and Alternate Splice Variants 149
9.3 Cytochrome P450 Structure 151
9.4 Mechanisms of P450 Catalysis 154
 9.4.1 Catalytic Cycle 154
 9.4.2 Catalytic Requirements 155
 9.4.3 Substrate Specificity and Overlap 155
 9.4.4 Endogenous Substrates 157
9.5 Cytochrome P450 Regulation 160
 9.5.1 Tissue Distribution 160
 9.5.2 Constitutive and Inducible P450 Enzymes 161
 9.5.3 Aromatic Hydrocarbon Receptor Induction of P450s 162
 9.5.4 Phenobarbital Induction of P450s 163
 9.5.5 Induction of P450s by Peroxisome Proliferators 165
 9.5.6 Hormonal Regulation of P450s 166
 9.5.7 Nutritional Regulation of P450s 167
 9.5.8 Regulation of P450s by Cytokines 168
 9.5.9 Regulation of P450s by Nitric Oxide 168
 9.6 Transgenic Animal Models 169
 9.7 Reactive Oxygen Species 169
 9.8 Posttranslation Modification of P450s 170
 9.9 Summary 171
 Suggested Reading 171

10. Phase I Metabolism of Toxicants and Metabolic Interactions 173
 Ernest Hodgson, Parikshit C. Das, Taehyeon M. Cho, and Randy L. Rose
 10.1 Introduction 173
 10.2 Microsomal Monooxygenations: General Background 175
 10.2.1 CYP-Dependent Monooxygenase Reactions 175
 10.2.1a Epoxidation and Aromatic Hydroxylation 175
 10.2.1b Aliphatic Hydroxylation 175
 10.2.1c Dealkylation: O-, N-, and S-Dealkylation 176
 10.2.1d N-Oxidation 178
 10.2.1e Oxidative Deamination 178
 10.2.1f S-Oxidation 178
 10.2.1g P-Oxidation 179
 10.2.1h Desulfuration and Ester Cleavage 179
 10.2.1i Cyanide Release 180
 10.2.2 The Flavin-Containing Monooxygenase (FMO) 181
 10.3 Nonmicrosomal Oxidations 185
 10.3.1 Alcohol Dehydrogenases 185
 10.3.2 Aldehyde Dehydrogenases 186
 10.3.3 Amine Oxidases 186
 10.3.3a Monoamine Oxidases 186
 10.3.3b Diamine Oxidases 187
 10.3.4 Molybdenum Hydroxylases 187
 10.4 Cooxidation by Prostaglandin Synthetase 188
 10.5 Reduction Reactions 189
 10.5.1 Nitro Reduction 190
 10.5.2 Azo Reduction 191
 10.5.3 Reduction of Pentavalent Arsenic to Trivalent Arsenic 191
 10.5.4 Reduction of Disulfides 191
 10.5.5 Ketone and Aldehyde Reduction 191
10.5.6 Sulfoxide and N-Oxide Reductions 191
10.5.7 Reduction of Double Bonds 191
10.6 Hydrolysis 192
10.7 Epoxide Hydration 193
 10.7.1 Microsomal Epoxide Hydrolase 193
 10.7.2 Cytosolic Epoxide Hydrolase 194
10.8 DDT Dehydrochlorinase 195
10.9 Interactions Involving Xenobiotic Metabolizing Enzymes 196
 10.9.1 Induction 196
 10.9.2 Inhibition 196
 10.9.3 Activation in Vitro 200
 10.9.4 Synergism and Potentiation 201
Suggested Reading 202

11. Phase I—Toxicogenetics 205
 Ernest Hodgson and Edward L. Croom
11.1 Introduction 205
11.2 Polymorphisms in CYP Isoforms 207
 11.2.1 CYP2B6 209
 11.2.2 CYP2C9 209
 11.2.3 CYP2C19 209
 11.2.4 CYP2D6 210
 11.2.5 Other CYP Polymorphisms 210
11.3 Polymorphisms in Alcohol Dehydrogenase 211
11.4 Polymorphisms in Aldehyde Dehydrogenase 212
11.5 Polymorphisms in Flavin-Containing Monooxygenases 212
 11.5.1 FMO2 212
 11.5.2 FMO3 212
11.6 Polymorphisms in Epoxide Hydrolase 212
11.7 Polymorphisms in Serum Cholinesterase 213
11.8 Polymorphisms in Paraoxonase (PON1) 213
11.9 Polymorphisms: Mechanistic Classification 213
11.10 Polymorphisms and Drug Metabolism 215
11.11 Methods Used for the Study of Polymorphisms 215
11.12 Epidemiology 217
 Suggested Reading 218

12. Phase II—Conjugation of Toxicants 219
 Gerald A. LeBlanc
12.1 Introduction 219
12.2 Conjugation Reactions 219
12.3 Glycosides 221
 12.3.1 Glucuronides 221
 12.3.2 The UGT Superfamily 223
12.4 Sulfation 224
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4.1</td>
<td>The SULT Superfamily</td>
<td>225</td>
</tr>
<tr>
<td>12.4.2</td>
<td>SULT Regulation</td>
<td>226</td>
</tr>
<tr>
<td>12.5</td>
<td>Methylation</td>
<td>226</td>
</tr>
<tr>
<td>12.5.1</td>
<td>N-Methylation</td>
<td>226</td>
</tr>
<tr>
<td>12.5.2</td>
<td>O-Methylation</td>
<td>227</td>
</tr>
<tr>
<td>12.5.3</td>
<td>S-Methylation</td>
<td>228</td>
</tr>
<tr>
<td>12.6</td>
<td>Acylation</td>
<td>228</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Acetylation</td>
<td>228</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Amino Acid Conjugation</td>
<td>229</td>
</tr>
<tr>
<td>12.7</td>
<td>Glutathione S-Transferases</td>
<td>230</td>
</tr>
<tr>
<td>12.7.1</td>
<td>Allosteric Regulation</td>
<td>232</td>
</tr>
<tr>
<td>12.7.2</td>
<td>Regulation of Cell Signaling</td>
<td>233</td>
</tr>
<tr>
<td>12.7.3</td>
<td>GST Regulation</td>
<td>233</td>
</tr>
<tr>
<td>12.8</td>
<td>Cysteine S-Conjugate β-Lyase</td>
<td>234</td>
</tr>
<tr>
<td>12.9</td>
<td>Lipophilic Conjugation</td>
<td>235</td>
</tr>
<tr>
<td>12.10</td>
<td>Phase II Activation</td>
<td>235</td>
</tr>
<tr>
<td>12.11</td>
<td>Phase III Elimination</td>
<td>236</td>
</tr>
<tr>
<td>12.12</td>
<td>Conclusions</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>Suggested Reading</td>
<td>237</td>
</tr>
</tbody>
</table>

13. Regulation and Polymorphisms in Phase II Genes 239
Yoshiaki Tsuji

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>239</td>
</tr>
<tr>
<td>13.2</td>
<td>Roles of Phase II Genes and Polymorphisms</td>
<td>240</td>
</tr>
<tr>
<td>13.2.1</td>
<td>UDP-Glucuronosyl Transferases</td>
<td>240</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Glutathione Synthesis and Glutathione S-Transferases</td>
<td>243</td>
</tr>
<tr>
<td>13.2.3</td>
<td>N-Acetyltransferases</td>
<td>247</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Sulfotransferases</td>
<td>249</td>
</tr>
<tr>
<td>13.3</td>
<td>The Antioxidant Responsive Element and Phase II Gene Regulation</td>
<td>251</td>
</tr>
<tr>
<td>13.4</td>
<td>Summary</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Suggested Reading</td>
<td>255</td>
</tr>
</tbody>
</table>

14. Developmental Effects on Xenobiotic Metabolism 257
Martin J.J. Ronis and Helen C. Cunny

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>257</td>
</tr>
<tr>
<td>14.2</td>
<td>Xenobiotic Metabolism During Development</td>
<td>258</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Embryogenesis</td>
<td>259</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Xenobiotic Metabolism in the Neonate</td>
<td>260</td>
</tr>
<tr>
<td>14.2.2a</td>
<td>Effects of Infant Diet (Breast Feeding Versus Formula Feeding)</td>
<td>261</td>
</tr>
<tr>
<td>14.2.2b</td>
<td>Weaning to Solid Foods</td>
<td>261</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Xenobiotic Metabolism in Childhood and Preadolescence</td>
<td>262</td>
</tr>
<tr>
<td>14.2.4</td>
<td>Puberty and Adulthood</td>
<td>262</td>
</tr>
<tr>
<td>14.2.5 Effects of Aging</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>14.2.6 Effects of Disease</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>14.3 Effects of Pregnancy on Maternal Xenobiotic Metabolism</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>14.4 Developmental Effects on Xenobiotic Metabolism in Nonmammalian Species</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>14.5 Cycles in Development</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>271</td>
<td></td>
</tr>
</tbody>
</table>

15. Cellular Transport and Elimination

David S. Miller

15.1 Transport as a Determinant of Xenobiotic Action	273
15.2 Factors Affecting Membrane/Tissue Permeability	274
15.2.1 Cellular Level Transport	275
15.2.2 Tissue Level Transport	276
15.3 Xenobiotic Transporters	278
15.3.1 Transporter Families	278
15.3.1a ABC Transporters	280
15.3.1b Organic Anion Transporters (OATs; SLC22A)	281
15.3.1c Organic Cation Transporters (OCTs; SLC22A)	281
15.3.1d Organic Anion Transporting Polypeptides (OATPs; SLC21A)	281
15.3.1e Nucleoside and Nucleotide Transporters (SCL28 and SLC29)	282
15.3.1f Peptide Transporters (SLC15)	282
15.3.2 Determining the Molecular Basis for Transport in Cells and Tissues	282
15.4 Altered Xenobiotic Transport	283
15.4.1 Competition for Transport	283
15.4.2 Specific Regulation	284
15.4.2a Transporter Expression	284
15.4.2b Transporter Function	284
15.4.3 Genetic Heterogeneity	285
Suggested Reading	285

16. Mechanisms of Cell Death

Mac Law and Susan Elmore

16.1 Introduction	287
16.2 How Cells/Tissues React to “Stress”	288
16.2.1 Levels of Adaptation: Physiology vs. Pathology	288
16.2.2 Hypertrophy	288
16.2.3 Hyperplasia	288
16.2.4 Atrophy	289
16.2.5 Metaplasia 289
16.2.6 Dysplasia 289

16.3 Cell Injury and Cell Death 290
16.3.1 Causes of Cell Injury and Cell Death 291
 16.3.1a Hypoxia 291
 16.3.1b Physical Agents 291
 16.3.1c Chemicals 291
 16.3.1d Microbial Agents 291
 16.3.1e Other Causes 292
16.3.2 Pathogenesis of Reversible Versus Irreversible Cell Injury 292
16.3.3 Mechanisms of Irreversibility in Cell Injury 293

16.4 Morphology of Cell Injury and Cell Death 296
16.4.1 Cell Swelling (Hydropic Degeneration) 296
16.4.2 Types of Necrosis 297
 16.4.2a Coagulative Necrosis 297
 16.4.2b Caseous Necrosis 298
 16.4.2c Fat Necrosis 298
 16.4.2d Liquefactive Necrosis 298
16.4.3 Microscopic Appearance of Necrosis 299

16.5 Apoptosis 299
16.5.1 Morphology of Apoptosis 300
16.5.2 Mechanisms of Apoptosis 301
 16.5.2a Biochemical Features 304
 16.5.2b Extrinsic Pathway 305
 16.5.2c Perforin/Granzyme Pathway 306
 16.5.2d Intrinsic Pathway 307
 16.5.2e Execution Pathway 308
16.5.3 Physiologic Apoptosis 310
16.5.4 Pathologic Apoptosis 311
16.5.5 Assays for Apoptosis 313
 16.5.5a Cytomorphological Alterations 314
 16.5.5b DNA Fragmentation 314
 16.5.5c Detection of Caspases, Cleaved Substrates, Regulators, and Inhibitors 315
 16.5.5d Membrane Alterations 316
 16.5.5e Detection of Apoptosis in Whole Mounts 316
 16.5.5f Mitochondrial Assays 317

Suggested Reading 317

17. Mitochondrial Dysfunction 319
 Jun Ninomiya-Tsuji

17.1 Introduction 319
17.2 Mitochondrial Function 319
 17.2.1 Structure: Outer and Inner Membranes 319
17.2.2 Generating High-Energy Electrons (TCA Cycle, Fatty Acid Oxidation, FADH₂, and NADH) 320
17.2.3 Respiratory Chain (Complex I, II, III, and IV, Ubiquinone, Cytochrome c, Proton Pump, Membrane Potential, Proton Active Force) 321
17.2.4 Permeability Transition Pore (VDAC, ANT) 322

17.3 Mitochondrial Apoptosis/Necrosis 323
17.3.1 Mitochondrial Permeability Transition 323
17.3.2 Caspase Activation: Effector and Inhibitor Caspases 323
17.3.3 Mitochondria Are “Poison Cabinets” 324
17.3.4 Interplay of Bcl2 Family (BH3-only, Bcl2, Bax/Bak) 326
17.3.5 Permeability Transition Pore Opening 328
17.3.6 Cross-Talk of Bax/Bak and PTP Opening Pathways 329

17.4 Toxicant-Induced Mitochondrial Apoptosis/Necrosis 330
17.4.1 Electron Transport Inhibitors 330
17.4.2 Energy Transfer Inhibitors 331
17.4.3 Uncouplers 331

Suggested Reading 332

18. Glutathione-Dependent Mechanisms in Chemically Induced Cell Injury and Cellular Protection Mechanisms 333
Donald J. Reed

18.1 Introduction 333
18.2 Glutathione-Dependent Conjugation of Chemicals 334
18.3 GSH-Dependent Bioactivation of Chemicals 335
18.3.1 Enzymes Involved in Bioactivation 335
18.3.2 GSH-Dependent Biologically Reactive Intermediates 335
18.4 Oxidative Stress 336
18.4.1 Introduction 336
18.4.2 The Organization of Antioxidant Defense Against Oxidative Stress 338
18.4.3 Superoxide Dismutase (SOD) Defense 339
18.4.4 Role of GSH Protection Against Reactive Oxygen Species 340
18.4.5 Organelle Glutathione Protection Against Oxidative Stress 340
18.5 Glutathione-Dependent Cellular Defense Systems 343
18.5.1 Glutathione-Dependent Protection 343
18.5.2 Depletion of Glutathione by Chemicals and Fasting 348
18.5.3 Glutathione Compartmentation and Chemical-Induced Injury 349
18.5.4 Glutathione Redox Cycle 350
18.5.5 Regulation of Glutathione Biosynthesis 353
18.6 Glutathione/Glutathionylation-Dependent Signaling Systems and Antioxidant Defense 354
18.6.1 Formation of GSH-Protein Mixed Disulfides—Glutathionylation 354
18.6.2 Role of Protein Sulfinic Acids 354
18.6.3 Glutathionylation Induced by Nitric Oxide 355
18.6.4 Fate of Glutathionylated Proteins 356
18.6.5 Protein Glutathionylation as an Antioxidant Defense 356
18.6.6 Protein Glutathionylation as a Regulatory Response 356
18.7 Conclusions 357
Suggested Reading 357

Richard B. Mailman

19.1 Definition of a “Receptor” 359
19.1.1 A Brief History of the Concept of Receptors 359
19.1.2 Toxicants and Drugs as Ligands for Receptors 360
19.1.3 Is There a Normal Function for Toxicant Receptors? 360
19.1.4 Functional Biochemistry of Toxicant Receptors 362
19.1.5 Types of Interactions Between Toxicants and Receptors 363
19.1.6 Goals and Definitions 363
19.1.6a Definitions 363

19.2 Receptor Superfamilies 364
19.2.1 G-Protein-Coupled Receptors (GPCRs) 364
19.2.2 Ionotropic Receptors (Ligand-Gated Ion Channels) 366
19.2.3 Intracellular Steroid Receptors 367
19.2.4 Enzyme-Linked Receptors 367
19.2.5 Additional Cell Surface Targets for Toxicants 368
19.2.6 The Importance of Understanding Toxicant–Receptor Interactions 368

19.3 The Study of Receptor–Toxicant Interactions 369
19.3.1 Development of Radioligand Binding Assays 369
19.3.2 Equilibrium Determination of Affinity (Equilibrium Constants) 370
19.3.2a Law of Mass Action and Fractional Occupancy 370
19.3.2b The Theoretical Basis for Characterizing Receptors Using Saturation Radioligand Assays 372
19.3.2c Experimental Forms of Data from Saturation Radioligand Assays 375

19.3.3 Kinetic Determinations of Equilibrium Constants 377
19.3.4 Competition Binding Assays 378
19.3.4a The Cheng–Prusoff Equation 380
19.3.4b The Hill Plot 380
19.3.4c Visual Inspection of Binding Data 381
19.3.4d Complex Binding Phenomena 383
19.3.5 How to Conduct a Radioreceptor Assay 384
 19.3.5a Methods to Separate Bound from Free Radioligand 384
 19.3.5b Methods to Estimate Nonspecifically Bound Ligand 384

19.3.6 The Relation Between Receptor Occupancy and Biological Response 385

19.4 Relationship of Receptor Occupancy to Functional Effects 387
 19.4.1 Classical Definition of Receptor-Mediated Functional Effects 387
 19.4.2 Evolving Concepts of Receptor-Induced Functional Changes 387

Suggested Reading 388

20. Reactive Oxygen/Reactive Metabolites and Toxicity 389
Elizabeth L. MacKenzie

20.1 Introduction 389

20.2 Enzymes Involved in Bioactivation 390
 20.2.1 Phase I Oxidations 390
 20.2.1a Cytochrome P450 390
 20.2.1b Flavin-Containing Monooxygenase 392
 20.2.1c Prostaglandin Synthetase 393
 20.2.2 Phase II Conjugations 394
 20.2.3 Intestinal Microflora 395

20.3 Stability of Reactive Metabolites 396

20.4 Factors Affecting Activation and Toxicity 398
 20.4.1 Saturation of Detoxication Pathways 398
 20.4.2 Enzyme Induction 398
 20.4.3 Genetic and Physiological Factors 398
 20.4.4 Metabolic Interactions 399
 20.4.5 DNA Adduct Formation 399
 20.4.6 Redox Cycling 401
 20.4.7 Target Organ Toxicity 401

20.5 Reactive Oxygen Species and Toxicity 401
 20.5.1 Generation and Detoxication of Reactive Oxygen Species 402
 20.5.2 Oxidative DNA Damage 405
 20.5.3 Protein Oxidation 407
 20.5.4 Lipid Peroxidation 408

Suggested Reading 410

21. Metals 413
David B. Buchwalter

21.1 Introduction 413
 21.1.1 Importance of Essential Metals in Physiological Systems 415
CONTENTS

21.1.2 Examples and Causes of Essential Metal Deficiency 417
21.1.3 Examples and Causes of Essential Metal Excess 419
21.1.4 Toxicity Associated with Nonessential Metals 419
21.2 Understanding Metal Ion Reactions in Biological Systems 419
21.2.1 Metal Complexation with Biological Molecules 420
21.2.2 Nieboer and Richardson’s Metal Classification Scheme 421
21.3 Modes of Metal Toxicity 422
21.4 Metals and Oxidative Stress 423
21.5 Metallothioneins 424
21.5.1 Introduction 424
21.5.2 Classification and Structure 425
21.5.3 Function 425
21.5.4 Degradation 426
21.5.5 Isoforms 426
21.5.6 Induction and Regulation of MT Gene Expression 427
21.6 Examples of Toxic Metals 428
21.6.1 Cadmium 428
21.6.2 Lead 432
21.6.3 Mercury 434
21.7 Metals and Cancer 436
Suggested Reading 438

22. DNA Damage and Mutagenesis 441

Zhigang Wang

22.1 Introduction 441
22.2 Endogenous DNA Damage 442
22.2.1 DNA Base Mismatches 442
22.2.2 Base Deamination 442
22.2.3 AP Site 444
22.2.4 Oxidative DNA Damage 444
22.2.5 DNA Adducts Formed from Lipid Peroxidation Products 448
22.2.6 DNA Methylation 450
22.2.7 Incorporation of Inappropriate and Damaged dNTP into DNA During Replication 451
22.2.7a Incorporation of Uracil into DNA 451
22.2.7b Genomic DNA of the B. subtilis Phage PBS2 Naturally Contains Uracil Instead of Thymine 452
22.2.7c Incorporation of 8-Oxoguanine into DNA 452
22.3 Environmental DNA Damage 453
22.3.1 Mechanisms of Ionizing Radiation-Induced DNA Damage 453
22.3.1a Base Damage and Double-Strand Breaks 454
22.3.1b Multiple Damaged Sites and Double-Strand Breaks 455

22.3.2 UV Radiation 456
- **22.3.2a** The Major UV Lesions: Cyclobutane Pyrimidine Dimers and (6–4) Photoproducts 456
- **22.3.2b** Minor DNA Lesions of UV Radiation 458

22.3.3 DNA Damage by Chemicals 458
- **22.3.3a** DNA Damaging Chemicals without Metabolic Activation 459
- **22.3.3b** DNA Damaging Chemicals that Require Metabolic Activation 462

22.4 Concepts of Mutagenesis 466

22.4.1 Definition of Terms 466
- **22.4.1a** General Terms 467
- **22.4.1b** Terms Based on Phenotypic Consequences 468
- **22.4.1c** Terms Based on DNA Sequence Changes 469

22.4.2 Origin of Mutagenesis 469

22.4.3 Biological Significance of Mutagenesis 470

22.5 Mechanisms of DNA Damage-Induced Mutagenesis 471

22.5.1 Chromosomal Aberrations 471

22.5.2 Mutagenesis Induced by Double-Strand Breaks 473

22.5.3 DNA Damage Tolerance 473

22.5.4 Error-Prone Translesion Synthesis Is the Major Mechanism of Base Damage-Induced Mutagenesis 475

22.5.5 Base-Damage-Induced Mutagenesis is a Major Component of the SOS Response in *E. coli* 477

22.5.6 The Polζ Mutagenesis Pathway in Eukaryotes 478
- **22.5.6a** The Rad6–Rad18 Complex Is a Ubiquitin Ligase Complex 478
- **22.5.6b** Rev3–Rev7 Complex Forms the Translesion Polymerase Polζ 479

22.5.7 The Y Family of DNA Polymerases 480
- **22.5.7a** Rev1 Is a dCMP Transferase 480
- **22.5.7b** DNA Polymerase η 481
- **22.5.7c** DNA Polymerase κ 481
- **22.5.7d** DNA Polymerase ι 482
- **22.5.7e** Common Biochemical Properties of the Y Family of DNA Polymerases 482

22.5.8 Mechanistic Models of Translesion Synthesis 483

22.5.9 Control of Translesion Synthesis and Mutagenesis 484

22.5.10 Specificity of Base Damage-Induced Mutagenesis: Some Examples 485
- **22.5.10a** AP Sites 485
- **22.5.10b** UV Photoproducts 486
23. DNA Repair

Isabel Mellon

23.1 Introduction 493
23.2 Direct Reversal of Base Damage 495
 23.2.1 UV Radiation 495
 23.2.2 Alkylation Damage 498
23.3 Base Excision Repair 502
 23.3.1 Glycosylases 503
 23.3.1a Uracil 504
 23.3.1b Alkylated Bases 505
 23.3.1c Oxidized and Fragmented Bases 505
 23.3.1d Pyrimidine Dimers 507
 23.3.2 AP Endonucleases 507
 23.3.3 Repair Synthesis and Ligation 508
23.4 Nucleotide Excision Repair 509
 23.4.1 DNA Damage Recognition 510
 23.4.2 NER in \textit{E. coli} 511
 23.4.3 NER in Mammalian Cells 513
 23.4.4 NER and Transcription 515
 23.4.5 Human Diseases 517
23.5 Mismatch Repair 519
 23.5.1 MMR in \textit{E. coli} 519
 23.5.2 MMR in Mammalian Cells 522
 23.5.3 MMR and Cancer 523
23.6 Recombinational Repair 524
 23.6.1 Double-Strand Break Repair in \textit{E. coli} 524
 23.6.2 Double-Strand Break Repair in Eukaryotic Cells 526
 23.6.3 Interstrand Crosslink Repair 528
23.7 DNA Repair and Chromatin Structure 530
 23.7.1 Chromatin Structure 530
 23.7.2 Chromatin Remodeling in DNA Repair 530
23.8 DNA Damage and Cell Cycle Checkpoints 531
 23.8.1 DNA Damage Sensing: ATM and ATR 532
 23.8.2 Mediators and Adaptors 533
 23.8.3 Effector Targets 534
23.9 Summary 535

Suggested Reading 535
24. Carcinogenesis 537

Robert C. Smart, Sarah J. Ewing, and Kari D. Loomis

24.1 Introduction and Historical Perspective 537
24.2 Human Cancer 538
 24.2.1 Causes, Incidence, and Mortality Rates 541
 24.2.2 Classification of Carcinogens 545
24.3 Categorization of Agents Associated with Carcinogenesis 549
 24.3.1 DNA Damaging Agents 550
 24.3.2 Epigenetic Agents 550
24.4 Somatic Mutation Theory 552
 24.4.1 Electrophilic Theory, Metabolic Activation, and DNA Adducts 552
 24.4.2 DNA Damage 555
 24.4.3 Complete Carcinogenesis Model 556
24.5 Epigenetic Mechanism of Tumorigenesis 557
24.6 Multistage Tumorigenesis 557
 24.6.1 Initiation–Promotion Model 559
 24.6.2 Mechanisms of Tumor Promotion 560
24.7 Tumor Viruses 562
 24.7.1 Acute Transforming Retroviruses 562
 24.7.2 Weak Transforming Retroviruses 564
 24.7.3 DNA Oncogenic Viruses 564
24.8 Cellular Oncogenes 565
 24.8.1 Cell Transformation; Role of Carcinogens and Oncogenes 565
 24.8.2 Activation of Proto-oncogenes to Oncogenes 566
 24.8.3 Oncogenes and Signal Transduction 568
 24.8.4 Oncogene Classification 569
 24.8.4a Growth Factors as Oncogenes 569
 24.8.4b Receptor Tyrosine Kinases as Oncogenes 569
 24.8.4c Non-Receptor Tyrosine Kinases as Oncogenes 571
 24.8.4d Guanosine Triphosphatases as Oncogenes 571
 24.8.4e Serine/Threonine Kinases as Oncogenes 574
 24.8.4f Transcription Factors as Oncogenes 574
 24.8.4g Oncogenic Proteins Involved in Cell Survival 575
 24.8.5 Oncogene Cooperation 575
24.9 Tumor Suppressor Genes 576
 24.9.1 Retinoblastoma Gene and the Cell Cycle 577
 24.9.2 Cyclin-Dependent Kinase Inhibitors and the pRb Circuit 579
 24.9.3 pRB Is Altered in Tumorigenesis by Multiple Mechanisms 579
 24.9.4 p53 580
 24.9.5 p14ARF 582
24.10 Mutator Phenotype/DNA Stability Genes 583
24.11 Interactions of Oncogenes and Tumor Suppressor Genes 584
 24.11.1 Colonic Tumorigenesis in Humans 584
 24.11.2 Skin Tumorigenesis in Mice 585
24.12 Genetically Modified Mouse Models 585
24.13 Conclusions 585
 Suggested Reading 586

25. Genetic Toxicology 587
R. Julian Preston

25.1 Introduction and Historical Perspective 587
25.2 Genetic Toxicology and Risk Assessment (General Considerations) 589
25.3 Genotoxicity Assays 590
 25.3.1 DNA Damage and Repair Assays 590
 25.3.2 Gene Mutation Assay: Salmonella typhimurium 591
 25.3.3 Yeast Assays 592
 25.3.4 Mammalian Cell Assays (In Vitro)
 25.3.4a Gene Mutation Assays 592
 25.3.4b Cytogenetic Assays 593
 25.3.5 Mammalian Cell Assays (In Vivo)
 25.3.5a Gene Mutation Assays 596
 25.3.5b Cytogenetic Assays 597
 25.3.6 Germ Cell Assays
 25.3.6a Drosophila Sex-Linked Recessive Lethal Test (SLRL) 597
 25.3.6b Dominant Lethal Test (Rodent) 598
 25.3.6c Heritable Translocation Test (Rodent) 598
 25.3.6d Mouse-Specific Locus Test 598
 25.3.7 Summary of Genotoxicity Assays 598
 25.3.8 Modifiers of Genetic Response 599
 25.3.9 Test Batteries for Detecting Carcinogens 600
25.4 Use of Mechanistic Data in Cancer and Genetic Risk Assessments (Specific Considerations) 602
25.5 New Research Directions 604
25.6 Conclusions 605
 Suggested Reading 606

26. Molecular Epidemiology and Genetic Susceptibility 607
Ruth M. Lunn and Mariana C. Stern

26.1 Introduction 607
26.2 Basic Concepts in Epidemiology 608
 26.2.1 Designing Epidemiological Studies 609
 26.2.1a Descriptive Studies 609
26.2.1b Observational Analytical Studies 610
26.2.1c Experimental Studies 612
26.2.2 Measuring Occurrence and Associations 612
26.2.2a Measures of Occurrence 613
26.2.2b Measures of Association 613
26.2.3 Evaluating Random Error: Confidence Intervals, Statistical Testing, and Statistical Power 615
26.2.4 Evaluating Systematic Biases 616
26.2.4a Selection Bias 616
26.2.4b Measurement of Information Bias 617
26.2.5 Evaluating Confounding 617
26.2.6 Evaluating Interaction or Effect Modification 619
26.3 Biomarkers Used in Molecular Epidemiology 620
26.3.1 Identification and Validation of Biomarkers 621
26.3.1a Identification and Development of Biomarkers 622
26.3.1b Applied Transitional Studies 622
26.3.1c Validation in Applied Epidemiological Studies 623
26.3.1d Sources of Biomarker Variability 623
26.3.2 Biomarkers of Exposure 623
26.3.2a Biomarkers of Internal Dose 624
26.3.2b Biologically Effective Dose 625
26.3.2c Endogenous Exposure 626
26.3.3 Biomarkers of Response or Outcome 626
26.3.3a Stage of Events 627
26.3.3b Types of Markers 628
26.3.3c Specificity 628
26.3.3d Preclinical Biomarkers 628
26.3.4 Biomarkers of Susceptibility 629
26.4 Biomarkers of Genetic Susceptibility 629
26.4.1 Types of Genetic Variants 630
26.4.2 Analytical Methods 632
26.4.3 Gene–Environment Interactions 632
26.4.4 Special Considerations 634
26.4.4a Population Admixture 634
26.4.4b Multiple Comparisons 635
26.4.4c Lack of Statistical Power 635
26.5 Summary and Concluding Remarks 635
Suggested Reading 636

27. Respiratory Toxicology 639
James C. Bonner

27.1 Introduction 639
27.2 Anatomy and Function of the Respiratory Tract 639
27. Respiratory Toxicology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.2.1 Upper Respiratory Tract as a Site of Toxicity</td>
<td>642</td>
</tr>
<tr>
<td>27.2.2 Lower Respiratory Tract as a Site of Toxicity</td>
<td>644</td>
</tr>
<tr>
<td>27.2.3 Airways of the Lower Respiratory Tract</td>
<td>644</td>
</tr>
<tr>
<td>27.2.4 Parenchyma of the Lower Respiratory Tract</td>
<td>646</td>
</tr>
<tr>
<td>27.2.5 Circulatory, Lymphatic, and Nervous System of the Lung</td>
<td>649</td>
</tr>
<tr>
<td>27.3 Toxicant-Induced Lung Injury, Remodeling, and Repair</td>
<td>650</td>
</tr>
<tr>
<td>27.3.1 Oxidative Stress and Lung Injury</td>
<td>652</td>
</tr>
<tr>
<td>27.3.2 Antioxidant Mechanisms in the Lung</td>
<td>654</td>
</tr>
<tr>
<td>27.3.3 Oxidants and Cell Signaling in the Lung</td>
<td>655</td>
</tr>
<tr>
<td>27.3.4 Respiratory Tract Injury from Inhaled Particles and Fibers</td>
<td>657</td>
</tr>
<tr>
<td>27.3.5 Particle and Fiber Deposition and Clearance</td>
<td>658</td>
</tr>
<tr>
<td>27.3.6 Respiratory Tract Injury from Gases and Vapors</td>
<td>660</td>
</tr>
<tr>
<td>27.4 Occupational and Environmental Lung Diseases</td>
<td>662</td>
</tr>
<tr>
<td>27.4.1 Pulmonary Fibrosis</td>
<td>662</td>
</tr>
<tr>
<td>27.4.2 Asthma</td>
<td>664</td>
</tr>
<tr>
<td>27.4.3 Hypersensitivity Pneumonitis</td>
<td>667</td>
</tr>
<tr>
<td>27.4.4 COPD</td>
<td>668</td>
</tr>
<tr>
<td>27.4.5 Lung Cancer</td>
<td>669</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>670</td>
</tr>
</tbody>
</table>

28. Hepatotoxicity

Andrew D. Wallace and Sharon A. Meyer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1 Introduction</td>
<td>671</td>
</tr>
<tr>
<td>28.2 Liver Organization and Cellular Components</td>
<td>672</td>
</tr>
<tr>
<td>28.2.1 Regional Differences of Lobular Function</td>
<td>673</td>
</tr>
<tr>
<td>28.2.2 Liver Stem Cells</td>
<td>674</td>
</tr>
<tr>
<td>28.2.3 Nonparenchymal Liver Cells</td>
<td>674</td>
</tr>
<tr>
<td>28.3 Types of Chemically Induced Lesions</td>
<td>675</td>
</tr>
<tr>
<td>28.4 Mechanisms of Chemically Induced Hepatotoxicity</td>
<td>677</td>
</tr>
<tr>
<td>28.4.1 Fatty Liver</td>
<td>677</td>
</tr>
<tr>
<td>28.4.2 Fibrosis</td>
<td>678</td>
</tr>
<tr>
<td>28.4.3 Cholestasis</td>
<td>679</td>
</tr>
<tr>
<td>28.4.4 Necrosis and Apoptosis</td>
<td>680</td>
</tr>
<tr>
<td>28.4.5 Oxidative Stress</td>
<td>681</td>
</tr>
<tr>
<td>28.4.6 Enterohepatic Circulation</td>
<td>685</td>
</tr>
<tr>
<td>28.5 Interactions</td>
<td>685</td>
</tr>
<tr>
<td>28.5.1 Metabolism-Dependent</td>
<td>685</td>
</tr>
<tr>
<td>28.5.2 Protective Priming</td>
<td>686</td>
</tr>
<tr>
<td>28.6 Detection and Prediction of Hepatotoxicity</td>
<td>686</td>
</tr>
<tr>
<td>28.6.1 Clinical</td>
<td>686</td>
</tr>
<tr>
<td>28.6.2 Experimental</td>
<td>687</td>
</tr>
<tr>
<td>28.7 Compounds Causing Liver Injury</td>
<td>688</td>
</tr>
<tr>
<td>28.7.1 Drugs</td>
<td>688</td>
</tr>
</tbody>
</table>
28.7.2 Ethanol 689
28.7.3 Halogenated Aliphatic Hydrocarbons 689
28.7.4 Pesticides 689
28.7.5 Toxins 690

28.8 Conclusion 690
Suggested Reading 691

29. Biochemical Mechanisms of Renal Toxicity 693
Joan B. Tarloff and Andrew D. Wallace

29.1 Introduction 693

29.2 Fundamental Aspects of Renal Physiology 693
29.2.1 Structural Organization of the Kidney 693
29.2.2 Nephron Structure and Function 694
29.2.3 Renal Vasculature and Glomerular Filtration 694
 29.2.3a Arterioles 695
 29.2.3b Morphologic Basis for Glomerular Filtration 695
 29.2.3c Mesangial Cells 697
 29.2.3d Peritubular Capillaries 697
 29.2.3e Vasa Recta 697
 29.2.3f Juxtaglomerular Apparatus and Renin Secretion 697

 29.2.4 Tubular Function and Formation of Urine 698
 29.2.4a Proximal Tubule 699
 29.2.4b Loop of Henle and Countercurrent System 699
 29.2.4c Distal Tubule 700
 29.2.4d Collecting Duct 700

29.3 Factors Contributing to Nephrotoxicity 701

29.4 Assessment of Nephrotoxicity 702
29.4.1 In Vivo Methods 702
29.4.2 In Vitro Methods 704
29.4.3 Histopathology 705
29.4.4 Compensation for Renal Damage 706

29.5 Site-Specific Nephrotoxicity 706
29.5.1 Glomerulus as a Site of Toxicity 706
29.5.2 Proximal Tubule as a Site of Toxicity 709
29.5.3 Aminoglycoside Nephrotoxicity: Role of Proximal Tubular Reabsorption 709
 29.5.3a Renal Handling of Aminoglycosides 710
 29.5.3b Biochemical Mechanisms in Aminoglycoside Cytotoxicity 711

 29.5.4 Cephalosporin Nephrotoxicity: Role of Proximal Tubular Secretion 713
 29.5.4a Renal Handling of Cephalosporins 713
 29.5.4b Biochemical Mechanism of Cephalosporin Cytotoxicity 714
29.5.5 Chloroform Nephrotoxicity: Role of Metabolic Bioactivation 716
29.5.6 Mercury Nephrotoxicity: Role of Molecular Mimicry 718
29.5.7 Loop of Henle as a Site of Toxicity 719
29.5.8 Distal Tubule as a Site of Injury 720
29.5.9 Collecting Tubules as a Site of Injury 721
29.5.10 Crystalluria 722

29.6 Summary 723
Suggested Reading 724

30. Biochemical Toxicology of the Peripheral Nervous System 725

Jeffry F. Goodrum, Arrel D. Toews, and Thomas W. Bouldin

30.1 Introduction 725
30.2 Specialized Aspects of Neuronal Metabolism 729
30.2.1 Anterograde Axonal Transport 730
30.2.2 Retrograde Axonal Transport 731
30.3 Specialized Aspects of Schwann Cell Transport 731
30.3.1 Myelin Composition and Metabolism 731
30.4 Toxic Neuropathies 732
30.4.1 Selective Vulnerability 732
30.4.2 Characteristics of Axonal Neuropathies 733
30.4.3 Biochemical Mechanisms of Axonal Degeneration 735
30.4.3a Inhibitors of Energy Production 735
30.4.3b Inhibitors of Protein Synthesis 736
30.4.3c Structural Components of the Axon as Sites of Vulnerability 736
30.4.3d Schwann Cell Effects on Axons 737
30.4.4 Characteristics of Demyelinating Neuropathies 737
30.4.5 Biochemical Mechanisms of Demyelination 738
30.4.6 Molecular Approaches to Assessing Neurotoxic Insults to the PNS 739

30.5 Conclusion 739
Suggested Reading 740

31. Biochemical Toxicology of the Central Nervous System 743

Bonita L. Blake

31.1 Introduction 743
31.2 CNS Sites of Toxic Action 744
31.2.1 Neuronal Targets 744
31.2.2 Glial Targets 746
31.2.3 Vascular and Extracellular Targets 749
31.3 Factors Affecting Neurotoxicant Susceptibility 750
31.3.1 Endogenous Factors 750
31.3.1a Genetic Determinants of Susceptibility 750
31.3.1b Epigenetic Determinants 751
31.4 Mechanisms of Neurotoxicity and Neuroprotection

31.4.1 Neurotoxic Processes
- **31.4.1a** Disruption of Critical Structure and Function
- **31.4.1b** Molecular and Biochemical CNS Responses to Cytotoxic Stress

31.4.2 Neuroprotection
- **31.4.2a** Antioxidants, Innate Immunity, and Neurotrophism
- **31.4.2b** The Blood–Brain Barrier

31.5 The Dynamic Nervous System: Adaptibility, Plasticity, and Repair

32. Immunotoxicology

32.1 Introduction

32.2 Organization of the Immune System
- **32.2.1** Cells, Tissues, and Mediators
- **32.2.2** Innate Responses
- **32.2.3** Acquired Immune Responses

32.3 Immunotoxicology
- **32.3.1** Identifying Immune Suppressants
- **32.3.2** Identifying Proteins and Chemicals that Cause or Exacerbate Allergic Disease

32.4 Mechanisms of Immune Suppression
- **32.4.1** Cyclosporin A and Glucocorticoids
- **32.4.2** Halogenated Aromatic Hydrocarbons
- **32.4.3** Ultraviolet Radiation
- **32.4.4** Cyclophosphamide
- **32.4.5** Polycyclic Aromatic Hydrocarbons
- **32.4.6** Organic Solvents
- **32.4.7** Summary of Immunosuppressive Mechanisms

32.5 Mechanisms Associated with Hypersensitivity
- **32.5.1** Classification of Immune-Mediated Injury Based on Mechanisms
- **32.5.2** Features Common to Respiratory and Dermal Allergies
- **32.5.3** Respiratory Allergy/Allergic Asthma
- **32.5.4** Immediate-Type Hypersensitivity Skin Reactions
- **32.5.5** Allergic Contact Dermatitis (Contact Hypersensitivity)
32.5.6 Delayed-Type Hypersensitivity in the Lung 795
32.5.7 Food Allergy 796
32.5.8 Adjuvants 796
32.5.9 Summary of Hypersensitivity Mechanisms 798
32.6 Mechanisms Associated with Autoimmune Disease 798
32.6.1 Autoimmune Diseases 798
32.6.2 Mechanisms of Autoimmunity 798
32.6.3 Genetic Predisposition 800
32.6.4 The Role of Environmental Factors in Autoimmune Disease 800
32.6.5 Summary of Autoimmune Mechanisms 802
Suggested Reading 802

33. Reproductive Toxicology 805
John F. Couse

33.1 Introduction 805
33.2 General Principles of Reproductive Toxicology 805
33.2.1 General Mechanisms of Reproductive Toxicants 806
33.2.2 Cell Signaling and Endocrine Disruption 806
33.3 Sexual Differentiation 807
33.4 Neuroendocrine Regulation of Reproduction 809
33.4.1 Neuroendocrine Control of the Ovarian Cycle in Females 811
33.4.2 HPG Axis as a Target for Toxicants 812
33.4.2a GnRH Analogs 812
33.4.2b Disruption of Neurotransmitters 813
33.4.2c Steroids and Endocrine-Disrupting Chemicals 813
33.5 Male Reproductive System 813
33.5.1 Testes 814
33.5.1a Spermatogenesis 815
33.5.1b Sertoli Cells 816
33.5.2c Leydig Cells and Steroidogenesis 818
33.5.2 Efferent Ducts and Epididymes as Targets for Toxicants 819
33.5.3 Male Accessory Sex Glands 820
33.6 Female Reproductive System 821
33.6.1 Ovaries 821
33.6.1a Embryonic Development of Female Germ Cells 821
33.6.1b Folliculogenesis and Steroidogenesis 822
33.6.1c Ovulation and Luteinization 825
33.6.2 Fertilization 826
33.6.3 Uterine Cycle, Implantation, and Pregnancy 826
33.6.4 Parturition 827
33.6.5 Lactation 827
33.7 General Categories of Reproductive Toxicants 829
33.8 Summary 830
Suggested Reading 830

34. Developmental Toxicology 831
John F. Couse

34.1 Introduction 831
34.2 Overview of Development 832
34.2.1 Embryonic Period 832
34.2.1a Sonic Hedgehog Signaling in Limb Morphogenesis 833
34.2.1b Homeobox (HOX) Genes and Body Segmentation 835
34.2.2 Fetal Period 836
34.3 Wilson’s Principles of Teratology 837
34.3.1 Role of Gene–Gene and Gene–Environment Interactions 837
34.3.2 Susceptibility Varies with Gestational Age 838
34.3.3 Developmental Toxicants Act via Specific Mechanisms 839
34.3.4 Final Manifestations of Developmental Toxicity 839
34.3.5 Nature of the Toxicant Determines Access to the Conceptus 840
34.3.6 Teratogenesis Is a Threshold Concept 841
34.4 Selected Examples of Developmental Toxicants 841
34.4.1 Anticonvulsants 842
34.4.2 Cyclophosphamide 843
34.4.3 Diethylstilbestrol 845
34.4.4 Retinoids 846
34.4.5 Thalidomide 847
34.5 Summary 848
Suggested Reading 848

35. Dermatotoxicology 851
Nancy A. Monteiro-Riviere

35.1 Introduction 851
35.2 Functions of Skin 851
35.3 Epidermis 852
35.3.1 Epidermal Keratinocytes 853
35.3.1a Stratum Corneum 853
35.3.1b Stratum Lucidum 854
35.3.1c Stratum Granulosum 854
35.3.1d Stratum Spinosum 854
35.3.1e Stratum Basale 854
35.3.2 Epidermal Nonkeratinocytes 855
 35.3.2a Melanocytes 855
 35.3.2b Merkel Cells 855
 35.3.2c Langerhans Cells 855
35.3.3 Keratinization 856
35.3.4 Basement Membrane 856
35.3.5 Dermis 857
35.3.6 Appendageal Structures 857
35.3.7 Sebaceous Glands 859
35.3.8 Apocrine Sweat Glands 859
35.3.9 Eccrine Sweat Glands 859
35.4 Anatomical Factors to Consider in Model Selection 860
 35.4.1 Species Differences 860
 35.4.2 Body Sites 861
 35.4.3 Hair Follicles 861
 35.4.4 Blood Flow 862
 35.4.5 Age 862
 35.4.6 Disease State 863
 35.4.7 Metabolism 863
 35.4.8 Summary 863
35.5 Percutaneous Absorption and Penetration 864
 35.5.1 Dermatopharmacokinetics 865
 35.5.2 Routes of Absorption and Penetration 866
 35.5.3 Factors and Chemicals that Affect Percutaneous Absorption 867
 35.5.4 Experimental Techniques Used to Assess Absorption 868
35.6 Dermatotoxicity 869
 35.6.1 Mechanisms of Keratinocyte Mediation of Skin Irritation/Inflammation 870
 35.6.2 Cell Death: Apoptosis or Necrosis 872
 35.6.3 Irritancy Testing Protocols 874
 35.6.4 Phototoxicity 875
 35.6.5 Vesication 877
35.7 Dermal Toxicity of Nanoparticles 878
35.8 Conclusion 879
Suggested Reading 879
Index 881