Relativistic Cosmology

Cosmology has been transformed by dramatic progress in high-precision observations and theoretical modelling. This book surveys key developments and open issues for graduate students and researchers. Using a relativistic geometric approach, it focuses on the general concepts and relations that underpin the standard model of the Universe.

Part 1 covers foundations of relativistic cosmology, whilst Part 2 develops the dynamical and observational relations for all models of the Universe based on general relativity. Part 3 focuses on the standard model of cosmology, including inflation, dark matter, dark energy, perturbation theory, the cosmic microwave background, structure formation and gravitational lensing. It also examines modified gravity and inhomogeneity as possible alternatives to dark energy. Anisotropic and inhomogeneous models are described in Part 4, and Part 5 reviews deeper issues, such as quantum cosmology, the start of the universe and the multiverse proposal. Colour versions of some figures are available at www.cambridge.org/9780521381154.

George F. R. Ellis FRS is Professor Emeritus at the University of Cape Town, South Africa. He is co-author with Stephen Hawking of The Large Scale Structure of Space-Time.

Roy Maartens holds an SKA Research Chair at the University of the Western Cape, South Africa, and is Professor of Cosmology at the University of Portsmouth, UK.

Malcolm A. H. MacCallum is Director of the Heilbronn Institute at Bristol, and is President of the International Society on General Relativity and Gravitation.
Relativistic Cosmology

GEORGE F. R. ELLIS
University of Cape Town

ROY MAARTENS
University of Portsmouth and University of the Western Cape

MALCOLM A. H. MACCALLUM
University of Bristol
Contents

Preface

Part 1 Foundations

1 **The nature of cosmology**
 1.1 The aims of cosmology
 1.2 Observational evidence and its limitations
 1.3 A summary of current observations
 1.4 Cosmological concepts
 1.5 Cosmological models
 1.6 Overview

2 **Geometry**
 2.1 Manifolds
 2.2 Tangent vectors and 1-forms
 2.3 Tensors
 2.4 Lie derivatives
 2.5 Connections and covariant derivatives
 2.6 The curvature tensor
 2.7 Riemannian geometry
 2.8 General bases and tetrads
 2.9 Hypersurfaces

3 **Classical physics and gravity**
 3.1 Equivalence principles, gravity and local physics
 3.2 Conservation equations
 3.3 The field equations in relativity and their structure
 3.4 Relation to Newtonian theory

Part 2 Relativistic cosmological models

4 **Kinematics of cosmological models**
 4.1 Comoving coordinates
 4.2 The fundamental 4-velocity
 4.3 Time derivatives and the acceleration vector
 4.4 Projection to give three-dimensional relations
Contents

4.5 Relative position and velocity 79
4.6 The kinematic quantities 80
4.7 Curvature and the Ricci identities for the 4-velocity 86
4.8 Identities for the projected covariant derivatives 88

5 Matter in the universe 89
5.1 Conservation laws 90
5.2 Fluids 95
5.3 Multiple fluids 101
5.4 Kinetic theory 104
5.5 Electromagnetic fields 110
5.6 Scalar fields 115
5.7 Quantum field theory 117

6 Dynamics of cosmological models 119
6.1 The Raychaudhuri–Ehlers equation 119
6.2 Vorticity conservation 124
6.3 The other Einstein field equations 126
6.4 The Weyl tensor and the Bianchi identities 132
6.5 The orthonormal 1+3 tetrad equations 134
6.6 Structure of the 1+3 system of equations 139
6.7 Global structure and singularities 143
6.8 Newtonian models and Newtonian limits 147

7 Observations in cosmological models 153
7.1 Geometrical optics and null geodesics 153
7.2 Redshifts 156
7.3 Geometry of null geodesics and images 159
7.4 Radiation energy and flux 161
7.5 Specific intensity and apparent brightness 167
7.6 Number counts 170
7.7 Selection and detection issues 171
7.8 Background radiation 172
7.9 Causal and visual horizons 173

8 Light-cone approach to relativistic cosmology 180
8.1 Model-based approach 180
8.2 Direct observational cosmology 181
8.3 Ideal cosmography 186
8.4 Field equations: determining the geometry 187
8.5 Isotropic and partially isotropic observations 190
8.6 Implications and opportunities 194
Part 3 The standard model and extensions

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Homogeneous FLRW universes</td>
<td>201</td>
</tr>
<tr>
<td>9.1</td>
<td>FLRW geometries</td>
<td>202</td>
</tr>
<tr>
<td>9.2</td>
<td>FLRW dynamics</td>
<td>210</td>
</tr>
<tr>
<td>9.3</td>
<td>FLRW dynamics with barotropic fluids</td>
<td>212</td>
</tr>
<tr>
<td>9.4</td>
<td>Phase planes</td>
<td>220</td>
</tr>
<tr>
<td>9.5</td>
<td>Kinetic solutions</td>
<td>225</td>
</tr>
<tr>
<td>9.6</td>
<td>Thermal history and contents of the universe</td>
<td>226</td>
</tr>
<tr>
<td>9.7</td>
<td>Inflation</td>
<td>238</td>
</tr>
<tr>
<td>9.8</td>
<td>Origin of FLRW geometry</td>
<td>246</td>
</tr>
<tr>
<td>9.9</td>
<td>Newtonian case</td>
<td>247</td>
</tr>
<tr>
<td>10</td>
<td>Perturbations of FLRW universes</td>
<td>249</td>
</tr>
<tr>
<td>10.1</td>
<td>The gauge problem in cosmology</td>
<td>250</td>
</tr>
<tr>
<td>10.2</td>
<td>Metric-based perturbation theory</td>
<td>251</td>
</tr>
<tr>
<td>10.3</td>
<td>Covariant nonlinear perturbations</td>
<td>262</td>
</tr>
<tr>
<td>10.4</td>
<td>Covariant linear perturbations</td>
<td>267</td>
</tr>
<tr>
<td>11</td>
<td>The cosmic background radiation</td>
<td>282</td>
</tr>
<tr>
<td>11.1</td>
<td>The CMB and spatial homogeneity: nonlinear analysis</td>
<td>282</td>
</tr>
<tr>
<td>11.2</td>
<td>Linearized analysis of distribution multipoles</td>
<td>287</td>
</tr>
<tr>
<td>11.3</td>
<td>Temperature anisotropies in the CMB</td>
<td>292</td>
</tr>
<tr>
<td>11.4</td>
<td>Thomson scattering</td>
<td>294</td>
</tr>
<tr>
<td>11.5</td>
<td>Scalar perturbations</td>
<td>295</td>
</tr>
<tr>
<td>11.6</td>
<td>CMB polarization</td>
<td>300</td>
</tr>
<tr>
<td>11.7</td>
<td>Vector and tensor perturbations</td>
<td>303</td>
</tr>
<tr>
<td>11.8</td>
<td>Other background radiation</td>
<td>303</td>
</tr>
<tr>
<td>12</td>
<td>Structure formation and gravitational lensing</td>
<td>307</td>
</tr>
<tr>
<td>12.1</td>
<td>Correlation functions and power spectra</td>
<td>307</td>
</tr>
<tr>
<td>12.2</td>
<td>Primordial perturbations from inflation</td>
<td>309</td>
</tr>
<tr>
<td>12.3</td>
<td>Growth of density perturbations</td>
<td>317</td>
</tr>
<tr>
<td>12.4</td>
<td>Gravitational lensing</td>
<td>330</td>
</tr>
<tr>
<td>12.5</td>
<td>Cosmological applications of lensing</td>
<td>339</td>
</tr>
<tr>
<td>13</td>
<td>Confronting the Standard Model with observations</td>
<td>345</td>
</tr>
<tr>
<td>13.1</td>
<td>Observational basis for FLRW models</td>
<td>346</td>
</tr>
<tr>
<td>13.2</td>
<td>FLRW observations: probing the background evolution</td>
<td>351</td>
</tr>
<tr>
<td>13.3</td>
<td>Almost FLRW observations: probing structure formation</td>
<td>355</td>
</tr>
<tr>
<td>13.4</td>
<td>Constraints and consistency checks</td>
<td>363</td>
</tr>
<tr>
<td>13.5</td>
<td>Concordance model and further issues</td>
<td>366</td>
</tr>
</tbody>
</table>
Contents

14 Acceleration from dark energy or modified gravity
 14.1 Overview of the problem 370
 14.2 Dark energy in an FLRW background 373
 14.3 Modified gravity in a RW background 376
 14.4 Constraining effective theories 390
 14.5 Conclusion 391

15 ‘Acceleration’ from large-scale inhomogeneity?
 15.1 Lemaître–Tolman–Bondi universes 395
 15.2 Observables and source evolution 399
 15.3 Can we fit area distance and number count observations? 401
 15.4 Testing background LTB with SNIa and CMB distances 403
 15.5 Perturbations of LTB 406
 15.6 Observational tests of spatial homogeneity 411
 15.7 Conclusion: status of the Copernican Principle 415

16 ‘Acceleration’ from small-scale inhomogeneity?
 16.1 Different scale descriptions 416
 16.2 Cosmological backreaction 421
 16.3 Specific models: almost FLRW 423
 16.4 Inhomogeneous models 426
 16.5 Importance of backreaction effects? 432
 16.6 Effects on observations 435
 16.7 Combination of effects: altering cosmic concordance? 440
 16.8 Entropy and coarse-graining 441

Part 4 Anisotropic and inhomogeneous models

17 The space of cosmological models
 17.1 Cosmological models with symmetries 447
 17.2 The equivalence problem in cosmology 452
 17.3 The space of models and the role of symmetric models 453

18 Spatially homogeneous anisotropic models
 18.1 Kantowski–Sachs universes: geometry and dynamics 456
 18.2 Bianchi I universes: geometry and dynamics 458
 18.3 Bianchi geometries and their field equations 462
 18.4 Bianchi universe dynamics 467
 18.5 Evolution of particular Bianchi models 474
 18.6 Cosmological consequences 481
 18.7 The Bianchi degrees of freedom 486
Contents

19 Inhomogeneous models 488

19.1 LTB revisited 490
19.2 Swiss cheese revisited 491
19.3 Self-similar models 493
19.4 Models with a G_3 acting on S_2 495
19.5 G_2 cosmologies 496
19.6 The Szekeres–Szafron family 498
19.7 The Stephani–Barnes family 501
19.8 Silent universes 501
19.9 General dynamics of inhomogeneous models 502
19.10 Cosmological applications 503

Part 5 Broader perspectives

20 Quantum gravity and the start of the universe 511

20.1 Is there a quantum gravity epoch? 511
20.2 Quantum gravity effects 512
20.3 String theory and cosmology 516
20.4 Loop quantum gravity and cosmology 526
20.5 Physics horizon 530
20.6 Explaining the universe – the question of origins 532

21 Cosmology in a larger setting 535

21.1 Local physics and cosmology 535
21.2 Varying ‘constants’ 539
21.3 Anthropic question: fine-tuning for life 542
21.4 Special or general? Probable or improbable? 546
21.5 Possible existence of multiverses 548
21.6 Why is the universe as it is? 554

22 Conclusion: our picture of the universe 555

22.1 A coherent view? 555
22.2 Testing alternatives: probing the possibilities 558
22.3 Limits of cosmology 559

Appendix Some useful formulae 561

A.1 Constants and units 561
A.2 1+3 covariant equations 563
A.3 Frequently used acronyms 565

References 566
Index 606
Preface

This book provides a survey of modern cosmology emphasizing the relativistic approach. It is shaped by a number of guiding principles.

- **Adopt a geometric approach** Cosmology is crucially based in spacetime geometry, because the dominant force shaping the universe is gravity; and the best classical theory of gravity we have is Einstein’s general theory of relativity, which is at heart a geometric theory. One should therefore explore the spacetime geometry of cosmological models as a key feature of cosmology.

- **Move from general to special** One can best understand the rather special models most used in cosmology by understanding relationships which hold in general, in all spacetimes, rather than by only considering special high symmetry cases. The properties of these solutions are then seen as specialized cases of general relations.

- **Explore geometric as well as matter degrees of freedom** As well as exploring matter degrees of freedom in cosmology, one should examine the geometric degrees of freedom. This applies in particular in examining the possible explanations of the apparent acceleration of the expansion of the universe in recent times.

- **Determine exact properties and solutions where possible** Because of the nonlinearity of the Einstein field equations, approximate solutions may omit important aspects of what occurs in the full theory. Realistic solutions will necessarily involve approximation methods, but we aim where possible to develop exact relations that are true generically, on the one hand, and exact solutions of the field equations that are of cosmological interest, on the other.

- **Explore the degree of generality or speciality of models** A key theme in recent cosmological writing is the idea of ‘fine tuning’, and it is typically taken to be bad if a universe model is rather special. One can, however, only explore the degree of speciality of specific models by embedding them in a larger context of geometrically and physically more general models.

- **Clearly relate theory to testability** Because of the special nature of cosmology, theory runs into the limits of the possibility of observational testing. One should therefore pursue all possible observational consistency checks, and be wary of claiming theories as scientific when they may not in principle be testable observationally.

- **Focus on physical and cosmological relevance** The physics proposed should be plausibly integrated into the rest of physics, where it is not directly testable; and the cosmological models proposed should be observationally testable, and be relevant to the astronomical situation we see around us.
xii Preface

• **Search for enduring rather than ephemeral aspects** We have attempted to focus on issues that appear to be of more fundamental importance, and therefore will not fade away, but will continue to be of importance in cosmological studies in the long term, as opposed to ephemeral topics that come and go.

Part 1 presents the foundations of relativistic cosmology. Part 2 is a comprehensive discussion of the dynamical and observational relations that are valid in all models of the universe based on general relativity. In particular, we analyse to what extent the geometry of spacetime can be determined from observations on the past light-cone. The standard Friedmann–Lemaître–Robertson–Walker (FLRW) universes are discussed in depth in Part 3, covering both the background and perturbed models. We present the theory of perturbations in both the standard coordinate-based and the 1+3 covariant approaches, and then apply the theory to inflation, the cosmic microwave background, structure formation and gravitational lensing. We review the key unsolved issue of the apparent acceleration of the expansion of the universe, covering dark energy models and modified gravity models. Then we look at alternative explanations in terms of large scale inhomogeneity or small scale inhomogeneity.

Anisotropic homogeneous (Gödel, Kantowski-Sachs and Bianchi) and inhomogeneous universes (including the Szekeres models) are the focus of Part 4, giving the larger context of the family of possible models that contains the standard FLRW models as a special case. In all cases the relation of the models to astronomical observations is a central feature of the presentation.

The text concludes in Part 5 with a brief review of some of the deeper issues underlying all cosmological models. This includes quantum gravity and the start of the universe, the relation between local physics and cosmology, why the universe is so special that it allows intelligent life to exist, and the issue of testability of proposals such as the multiverse.

The text is at an advanced level; it presumes a basic knowledge of general relativity (e.g. as in the recent introductory texts of Carroll (2004), Stephani (2004), Hobson, Efstathiou and Lasenby (2006) and Schutz (2009)) and of the broad nature of cosmology and cosmological observations (e.g. as in the recent introductory books of Harrison (2000), Ferreira (2007) and Silk (2008)). However, we provide a self-contained, although brief, survey of Riemannian geometry, general relativity and observations.

Our approach is similar to that of our previous reviews, Ellis (1971a, 1973), MacCallum (1973, 1979), Ellis and van Elst (1999a) and Tsagas, Challinor and Maartens (2008), and it builds on foundations laid by Eisenhart (1924), Synge (1937), Heckmann and Schucking (1962), Ehlers (1961), Trümper (1962, and unpublished), Hawking (1966) and Kristian and Sachs (1966). This approach differs from the approach in the excellent recent texts by Peacock (1999), Dodelson (2003), Mukhanov (2005), Weinberg (2008), Durrer (2008), Lyth and Liddle (2009) and Peter and Uzan (2009), in that we emphasize a covariant and geometrical approach to curved spacetimes and where possible consider general geometries instead of restricting considerations to the FLRW geometries that underlie the standard models of cosmology.
A further feature of our presentation is that although it is solidly grounded in relativity theory, we recognize the usefulness of Newtonian cosmological models and calculations. We detail how the Newtonian limit follows from the relativistic theory in situations of cosmological interest, and make clear when Newtonian calculations give a good approximation to the results of the relativistic theory and when they do not.

It is not possible to cover all of modern cosmology in depth in one book. We present a summary of present cosmological observations and of modern astrophysical understanding of cosmology, drawing out their implications for the theoretical models of the universe, but we often refer to other texts for in-depth coverage of particular topics. We are relatively complete in the theory of relativistic cosmological models, but even here the literature is so vast that we are obliged to refer to other texts for fuller details. In particular, the very extensive discussions of spatially homogeneous cosmologies and of inhomogeneous cosmologies in the books by Wainwright and Ellis (1997), Krasinski (1997), and Bolejko et al. (2010) complement and extend our much shorter summaries of those topics in Part 4. Our guiding aim is to present a coherent core of theory that is not too ephemeral, i.e. that in our opinion will remain significant even when some present theories and observations have fallen away. Only the passage of time will tell how good our judgement has been.

We have given numerical values for the key cosmological parameters, but these should be interpreted only as indicative approximations. The values and their error bars change as observations develop, so that no book can give definitive values. Furthermore, there are inherent limitations to parameter values and error bars – which depend on the particular observations used, on the assumptions made in reducing the observational data, on the chosen theoretical model needed to interpret the observations, and on the type of statistical analysis used.

In the text we have two kinds of interventions apart from the usual apparatus of footnotes and references: namely, exercises and problems. The Exercises enable the reader to develop and test his or her understanding of the main material; we believe we know the answers to all the exercises, or at least where the answer is given in the literature (in which case an appropriate reference is provided). By contrast, the Problems are unsolved questions whose solution would be of some interest, or in some cases would be a major contribution to our understanding.

We are grateful to numerous people who have played an important role in developing our understanding of cosmology: we cannot name them all (though most of their names will be found in the reference list at the end), but we would particularly like to thank John Barrow, Bruce Bassett, Hermann Bondi,1 Marco Bruni, Anthony Challinor, Chris Clarkson, Peter Coles, Rob Crittenden, Peter Dunsby, Ruth Durrer, Jürgen Ehlers,1 Henk van Elst, Pedro Ferreira, Stephen Hawking, Charles Hellaby, Kazuya Koyama, Julien Larena, David Matravers, Charles Misner, Jeff Murugan, Bob Nichol, Roger Penrose, Felix Pirani, Alan Rendall, Wolfgang Rindler, Tony Rothman, Rainer Sachs, Varun Sahni, Misao Sasaki, Bernd Schmidt, Engelbert Schucking, Dennis Sciama,1 Stephen Siklos, John Stewart, Bill Stoeger,

1 deceased
Reza Tavakol, Manfred Trümper, Christos Tsagas, Jean-Philippe Uzan, John Wainwright and David Wands for insights that have helped shape much of what is presented here. We thank the FRD and NRF (South Africa), the STFC and Royal Society (UK), and our departments, for financial support that has contributed to this work.

George F. R. Ellis
Roy Maartens
Malcolm A. H. MacCallum