SAP® Performance Optimization Guide

Analyzing and Tuning SAP Systems
Contents at a Glance

1 Performance Management of an SAP Solution 33
2 Analysis of Hardware, Database, and ABAP Application Server .. 75
3 Workload Analysis ... 145
4 Identifying Performance Problems in ABAP Programs 183
5 Hardware Sizing and System and Load Distribution 229
6 Memory Management ... 269
7 Load Distribution and Remote Function Calls 301
8 SAP GUI and Internet Connection .. 347
9 Locks .. 381
10 Optimizing Java Virtual Machine and Java Programs 407
11 Optimizing SQL Statements .. 461
12 SAP Buffering .. 521
13 Optimizing Queries in SAP NetWeaver Business Warehouse .. 561
14 Optimizing Search Queries Using TREX 615
15 Optimizing Database Queries with SAP HANA 659
A Database Monitors ... 727
B Selected Transaction Codes .. 777
C Review Questions and Answers ... 781
D Glossary ... 787
E Sources of Information .. 799
F The Author .. 815
Contents

Preface and Acknowledgments ... 17
Introduction .. 19

1 Performance Management of an SAP Solution 33

1.1 SAP Solution Architecture ... 34
 1.1.1 SAP Solutions and SAP Components ... 34
 1.1.2 Client/Server Architecture ... 38
1.2 Monitoring and Optimization Plan for an SAP Solution .. 47
 1.2.1 Requirements of a Monitoring and Optimization Plan 47
 1.2.2 Service-Level Management ... 51
 1.2.3 Plan for Continuous Performance Optimization 57
 1.2.4 Tools and Methods for the Monitoring and Optimization Plan 63
 1.2.5 SAP Solution Manager ... 66
1.3 Summary ... 71

2 Analysis of Hardware, Database, and ABAP Application Server ... 75

2.1 Basic Terms ... 76
2.2 Hardware Monitoring ... 77
 2.2.1 Analysis of a Hardware Bottleneck (CPU and Main Memory) 79
 2.2.2 Identifying Read/Write (I/O) Problems ... 86
 2.2.3 Further Analysis at the Operating System Level 87
2.3 Database Monitoring ... 89
 2.3.1 The Performance Monitor in the DBA Cockpit 90
 2.3.2 Analyzing the Database Buffer ... 91
 2.3.3 Identifying Expensive SQL Statements .. 95
 2.3.4 Identifying Read/Write (I/O) Problems ... 102
Contents

2.3.5 Other Database Checks .. 104

2.4 Analyzing SAP Memory Configuration 112
 2.4.1 Analyzing SAP Buffers ... 113
 2.4.2 Analyzing SAP Extended Memory, SAP Heap
 Memory, and SAP Roll Memory 115
 2.4.3 Displaying Allocated Memory 117
 2.4.4 Other Monitors for Detailed Analysis 119

2.5 Analyzing SAP Work Processes .. 121
 2.5.1 Work Process Overview Fields 122
 2.5.2 Analyzing Work Processes ... 125
 2.5.3 System-Wide Work Process Overview 128
 2.5.4 Monitoring the Dispatcher Queue 130

2.6 Analysis of the Internet Communication Manager (ICM) 133

2.7 Continuous Monitoring Using CCMS 134
 2.7.1 Working with the Alert Monitor 135
 2.7.2 Arranging Monitoring Tree ... 138
 2.7.3 Arranging Automatic Alert Messaging 141
 2.7.4 Graphical User Interface in SAP Solution
 Manager .. 142

2.8 Summary .. 143

3 Workload Analysis ... 145

 3.1 Basics of Workload Analysis and Runtime Analysis 146
 3.2 Workload Monitor .. 148
 3.2.1 Working with the Workload Monitor 149
 3.2.2 Technical Settings for the Workload Monitor 152

 3.3 Workload Analysis ... 152
 3.3.1 Transaction Step Cycle .. 153
 3.3.2 Other Time Components .. 155
 3.3.3 Interpreting Response Times 156
 3.3.4 Activity, Throughput, and Load 159

 3.4 Performing Workload Analyses ... 161
 3.4.1 Analyzing General Performance Problems 162
 3.4.2 Analyzing Specific Performance Problems 169

 3.5 End-to-End Workload Analysis .. 172
 3.5.1 Basics of End-to-End Workload Analysis 173
 3.5.2 Central Workload Monitor ... 174
 3.5.3 Working with the Central Workload Monitor 175
Contents

3.5.4 End-to-End Workload Monitor in SAP Solution Manager .. 178
3.6 Summary .. 179

4 Identifying Performance Problems in ABAP Programs .. 183

4.1 Single-Record Statistics .. 183
4.2 Performance Trace .. 188
 4.2.1 Activating a Performance Trace 188
 4.2.2 Evaluating an SQL Trace ... 190
 4.2.3 Other Functions in the SQL Trace 195
 4.2.4 Evaluating a Buffer Trace .. 197
 4.2.5 Evaluating an RFC Trace .. 198
 4.2.6 Evaluating an HTTP Trace .. 199
 4.2.7 Evaluating an Enqueue Trace .. 199
4.3 Performance Analysis with ABAP Trace (Runtime Analysis) .. 201
 4.3.1 Activating an ABAP Trace ... 201
 4.3.2 Evaluating an ABAP Trace .. 203
 4.3.3 Using Function Variations ... 205
 4.3.4 Outlook: Single Transaction Analysis 207
 4.3.5 Using Single Transaction Analysis 209
4.4 Analyzing Memory Usage with ABAP Debugger and in the Memory Inspector 210
4.5 Code Inspector ... 216
4.6 Central Single Statistics Records .. 218
4.7 End-to-End Runtime Analysis in SAP Solution Manager ... 220
 4.7.1 Activating the Runtime Analysis 221
 4.7.2 Displaying an End-to-End Runtime Analysis in SAP Solution Manager 223
4.8 Summary .. 225

5 Hardware Sizing and System and Load Distribution ... 229

5.1 Initial Hardware Sizing .. 231
 5.1.1 Overview of the Project for Initial Sizing 232
 5.1.2 Performing a Sizing Project in Detail 238
 5.1.3 SAP Standard Application Benchmarks 242
7.1.2 Distributing Dialog, Background, and Spool Work Processes .. 304
7.1.3 Distributing Users and Work Processes over CPU Resources .. 305
7.1.4 Dynamic User Distribution: Configuring Logon Groups .. 308
7.1.5 Limiting Resources per User .. 311
7.1.6 Operation Modes .. 312
7.1.7 Configuring Dynamic Work Processes .. 312
7.1.8 Update ... 313

7.2 Remote Function Calls (RFCs) ... 320
7.2.1 Fundamentals and Concepts .. 320
7.2.2 RFC Cycle ... 323
7.2.3 Configuring and Testing RFC Destinations 326
7.2.4 Monitoring Inbound and Outbound Loads 330
7.2.5 Configuring Parallel Processes with Asynchronous RFCs .. 335
7.2.6 Monitoring Data Transfer with Transactional RFCs .. 336
7.2.7 Background RFCs .. 338

7.3 New Load Distribution Concept ... 338

7.4 SAP Virtual Machine Container .. 341
7.5 Summary ... 343

8 SAP GUI and Internet Connection ... 347

8.1 SAP GUI ... 348
8.1.1 Interaction Model and Performance Measurement .. 348
8.1.2 Analyzing and Optimizing the Performance of GUI Communication 350

8.2 SAP Web Applications .. 356
8.2.1 Planning the Use of Web UI and the SAP GUI 357
8.2.2 HTTP Trace in the Internet Communication Manager .. 359

8.3 Analyses on the Presentation Server ... 360
8.3.1 Presentation Server Trace for Web Applications .. 362
8.3.2 Operating System Performance Tools .. 364
8.3.3 Continuously Monitoring Web Applications 365
8.4 Business Server Pages (BSPs), Web Dynpro ABAP, and
Integrated ITS .. 367
 8.4.1 Fundamentals of Business Server Pages and
 Web Dynpro ABAP ... 367
 8.4.2 Fundamentals of the Integrated ITS 370
 8.4.3 Fundamentals of ABAP Web Services 372
 8.4.4 Performing the Performance Analysis of ABAP
 Web Services, BSPs, Web Dynpro ABAP, and
 ITS Applications ... 373
 8.4.5 Monitoring Web Service Calls 376
8.5 Summary ... 376

9 Locks .. 381
 9.1 Lock Concepts of Database System and SAP System 382
 9.1.1 Database Locks ... 382
 9.1.2 SAP Enqueues .. 383
 9.2 Monitoring Locks .. 385
 9.2.1 Database Locks ... 385
 9.2.2 SAP Enqueues .. 389
 9.3 Number Range Buffering .. 391
 9.3.1 Fundamentals .. 391
 9.3.2 Activating Number Range Buffering 396
 9.3.3 Monitoring Number Range Buffering 397
 9.4 Locking with Quantities and ATP Server 398
 9.4.1 Fundamentals .. 399
 9.4.2 Configuring the ATP Server 400
 9.4.3 Monitoring the ATP Server 403
 9.5 Summary ... 404

10 Optimizing Java Virtual Machine and Java Programs 407
 10.1 Garbage Collection ... 409
 10.1.1 Construction of the Java Heap 409
 10.1.2 Garbage Collection Algorithms 411
 10.1.3 Selection of Collectors .. 412
 10.1.4 Parameterization of Java Heap Memory
 and Garbage Collection ... 413
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.5</td>
<td>Logging Garbage Collections</td>
<td>415</td>
</tr>
<tr>
<td>10.2</td>
<td>Just-in-Time Compiler</td>
<td>415</td>
</tr>
<tr>
<td>10.3</td>
<td>SAP Management Console</td>
<td>417</td>
</tr>
<tr>
<td>10.4</td>
<td>SAP Java Virtual Machine Profiler</td>
<td>419</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Architecture</td>
<td>419</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Establishing the Connection</td>
<td>421</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Allocation Analysis</td>
<td>424</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Performance HotSpot Analysis</td>
<td>430</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Method Parameter Analysis</td>
<td>434</td>
</tr>
<tr>
<td>10.4.6</td>
<td>Synchronization Analysis</td>
<td>436</td>
</tr>
<tr>
<td>10.4.7</td>
<td>File and Network I/O Analysis</td>
<td>439</td>
</tr>
<tr>
<td>10.4.8</td>
<td>Garbage Collection Analysis</td>
<td>441</td>
</tr>
<tr>
<td>10.4.9</td>
<td>Class Statistics and Heap Dump</td>
<td>444</td>
</tr>
<tr>
<td>10.5</td>
<td>Memory Analyzer</td>
<td>446</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Creating HPROF Files</td>
<td>447</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Analysis of the Java Heap with the Memory Analyzer</td>
<td>447</td>
</tr>
<tr>
<td>10.6</td>
<td>Local Database Monitors and SQL Trace in SAP</td>
<td>449</td>
</tr>
<tr>
<td>10.7</td>
<td>Java Workload and Runtime Analysis with CA Wily</td>
<td>452</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Functionality of Introscope</td>
<td>453</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Working with WebView and the Wily</td>
<td>454</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Introscope Trace</td>
<td>456</td>
</tr>
<tr>
<td>10.8</td>
<td>Summary</td>
<td>456</td>
</tr>
</tbody>
</table>

11 Optimizing SQL Statements .. 461

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Identifying and Analyzing Expensive SQL Statements</td>
<td>462</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Preliminary Analysis</td>
<td>463</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Detailed Analysis</td>
<td>465</td>
</tr>
<tr>
<td>11.2</td>
<td>Optimizing SQL Statements through Secondary Indexes</td>
<td>469</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Database Organization Fundamentals</td>
<td>470</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Administration for Indexes and Table Access Statistics</td>
<td>480</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Rules for Creating or Changing Secondary Indexes</td>
<td>487</td>
</tr>
</tbody>
</table>
Contents

11.3 Optimizing SQL Statements in the ABAP Program 495
 11.3.1 Rules for Efficient SQL Programming 496
 11.3.2 Example of Optimizing an SQL Statement in
 an ABAP Program ... 501
 11.3.3 Presetting Field Values in Report Transactions ... 511
11.4 Expensive SQL Statements Due to Incorrect Buffer
Settings and Administration Tools 515
11.5 Summary .. 517

12 SAP Buffering .. 521

12.1 Table Buffering Fundamentals 523
 12.1.1 Buffering Types ... 523
 12.1.2 Buffer Accessing ... 526
 12.1.3 Buffer Synchronization 528
 12.1.4 Activating Buffering 531
 12.1.5 Which Tables Should Be Buffered? 533
12.2 Monitoring Table Buffering on the ABAP Server 535
 12.2.1 Table Access Statistics 536
 12.2.2 Analyzing Buffered Tables 540
 12.2.3 Analyzing Tables That Are Currently Not
 Buffered .. 544
 12.2.4 Detailed Table Analysis 546
 12.2.5 Monitoring Buffer Synchronization (DDLOG
 Entries) .. 549
 12.2.6 SQL Statistics and SQL Trace 550
12.3 Monitoring Object-Oriented Application Buffers 551
12.4 Monitoring Table Buffering on the SAP NetWeaver
AS Java .. 556
12.5 Summary .. 558

13 Optimizing Queries in SAP NetWeaver Business
Warehouse .. 561

13.1 Fundamentals of SAP NetWeaver Business Warehouse ... 562
 13.1.1 Overview of the Most Important Concepts in
 SAP NetWeaver BW ... 563
 13.1.2 InfoCube and Extended Star Schema 566
 13.1.3 Overview of the Options for Performance
 Optimization ... 574
13.4 Summary ... 612

14 Optimizing Search Queries Using TREX 615

14.1 Fundamentals and Architecture of TREX Considering
 Performance Aspects .. 616
 14.1.1 TREX Application Scenarios and Search
 Functions .. 617
 14.1.2 Architecture of TREX .. 620
 14.1.3 Specific Characteristics of the SAP NetWeaver
 BW Accelerator .. 624
 14.1.4 Overview of TREX Administration Tools 626
14.2 Implementing the Performance Analysis on TREX 628
 14.2.1 Monitoring the Utilization of the TREX Servers ... 628
 14.2.2 Creating and Evaluating the Python Trace 634
 14.2.3 Creating and Evaluating a Performance Trace 635
14.3 Technical Optimization Options in Detail 636
 14.3.1 Dividing Indexes .. 637
 14.3.2 Reorganizing TREX ... 638
 14.3.3 Using Delta Indexes 639
 14.3.4 Using Master and Slave Index Servers 642
 14.3.5 Configuring Queue Servers 645
 14.3.6 Distributing the Preprocessing (Configuring
 the Preprocessor) .. 648
 14.3.7 Increase the Number of RFC Connections
 between the ABAP System and TREX 650
14.4 Indexing InfoCubes in the BWA 650
14.5 Summary ... 656
15 Optimizing Database Queries with SAP HANA 659

15.1 Application Scenarios for SAP HANA 661
15.2 Principles of Main Memory Data in SAP HANA and TREX ... 665
 15.2.1 Column-Based Data Storage 667
 15.2.2 Data Compression .. 668
 15.2.3 Data Storage in Main Memory 672
 15.2.4 Partitioning and Parallelization 675
 15.2.5 Indexing ... 676
 15.2.6 Data Modeling from a Performance View 679
15.3 Overview of the SAP HANA Architecture and Sizing 681
 15.3.1 SAP HANA Architecture 681
 15.3.2 Sizing .. 685
 15.3.3 SAP HANA Administration Tools 687
15.4 Technical Optimization Options in Detail 690
 15.4.1 Main Memory Analysis 690
 15.4.2 Identifying and Analyzing Expensive SQL Statements .. 698
 15.4.3 Creating Indexes (Inverted Index and Concatenated Index) ... 707
 15.4.4 Administration of Delta Indexes 710
 15.4.5 Load Distribution, Parallelization, and Partitioning .. 715
 15.4.6 Optimization of InfoCubes and DataStore Objects for SAP HANA 717
15.5 Summary ... 721

Appendices ... 725

A Database Monitors ... 727
B Selected Transaction Codes ... 777
C Review Questions and Answers 781
D Glossary ... 787
E Sources of Information .. 799
F The Author .. 815

Index .. 817
Introduction

Why is the performance of your business IT application important? Users will be motivated and work efficiently with an application only if response times are good. A slow system leads to downtime and frustration. If the situation deteriorates further, at worst, you no longer have the throughput necessary for running business processes. The results are overtime, delays in production, and financial loss. In contrast, the systematic, proactive optimization of performance considerably increases the value of your business application.

A data processing system’s performance is defined as the system’s ability to fulfill requirements in terms of response time and data throughput. The system might be required to achieve, for example, a throughput of 10,000 printed invoices in one hour or a response time of less than one second for the creation of a sales order. Good performance, however, is not an absolute characteristic of a business application. Rather, it should be viewed as always relative to the demands made on the application.

Proactive Performance Management

In this book, performance optimization refers to a process that always includes five phases. The first two phases are understanding the business processes and setting and quantifying performance goals. These steps involve all participating parties—that is, technicians and application experts. Optimization can be successful only on the basis of these prerequisites. Phases three to five involve the systematic monitoring, identification, and analysis of problems, the implementation of optimization measures, and further analysis to verify the success of the introduced measures (see Figure 1). We advise against randomly tinkering with configuration parameters and similar impulsive tuning measures. The object of this book is to enable you to identify and analyze performance problems in order to deal with them effectively.
Introduction

From a technical point of view, a business IT application is made up of many different components. These include the logical components: processes such as services, threads, or work processes, as well as memory areas such as buffers and user contexts. There are also the physical components such as processors (CPU), main memory (RAM), hard disks, and network segments. Each of these components allows for maximum throughput and optimal response time. If the interplay among the components is not appropriately balanced or an individual component has reached its performance limit, wait situations that have a negative effect on throughput and response times can occur. In this book, technical optimization refers to the identification, analysis, and solution of these problems by tuning the components and distributing the system’s load.

The second important task of performance optimization is preventing unnecessary load. Inefficient programs or their suboptimal use can weaken performance. The optimization of individual programs is referred to as application optimization.

The goal of optimization is to improve the system settings and applications to achieve the desired performance, based on existing hardware resources. If the existing resources are not sufficient, they must be extended according to the knowledge gained by analysis.

How much effort is involved in the performance analysis and tuning of an SAP solution? The answer to this question depends largely on the size of the system. For a small or medium installation with no modifications...
to the SAP standard or customer developments, it is normally sufficient to do performance optimization just before and shortly after the start of production and after large-scale changes, such as upgrades, large data transfers or client transports, or when new SAP solutions or additional users are introduced into the system. Of course, it is also necessary to intervene when acute performance problems occur. The tuning potential, along with its inherent effort in analysis and optimization, increases proportionately with the size of the system. Experience has shown that many performance bottlenecks are caused by customer developments and modifications to the standard SAP software. The most common reason for this is insufficient testing, but problems can also arise as a result of time constraints or lack of experience on the part of the developer. The extreme case would be a large, constantly developing installation with several hundred users, complicated process chains, a dozen or more developers (often from different consulting firms, working on the system at different times and in different places), and outsourced system management. In such a system environment, it is absolutely necessary for a small group of administrators and developers to have an overview of the entire system and keep an eye on performance.

SAP’s remote services offer help with performance analysis and tuning—namely, SAP GoingLive™ Check, which enables your system to make a smooth transition to production operation, and SAP EarlyWatch® Check, which monitors your system and suggests additional optimizations.

How does proactive performance management help you to achieve the objective of successfully running a business application? You should keep two influencing factors in mind if you’re going to achieve this objective: the satisfaction of users and the costs of running the business application. Operating costs arise, on the one hand, from the cost of hardware (e.g., infrastructure, CPU, main memory, hard disks, and networks) and personnel (e.g., administration, maintenance, and error analysis). However, you should not overlook the costs that arise if an application is not available or does not achieve the required performance. In these cases, losses incurred in a few hours or days can exceed an average year’s investment in proactive performance optimization. You must compare these costs to the costs of proactive performance management. Table 1 shows the value of proactive performance management with two concrete examples.
Table 1 Examples of the Value of Proactive Performance Management

<table>
<thead>
<tr>
<th>Proactive Measure</th>
<th>Effect on System</th>
<th>Immediate Value, Owing to Increased User Satisfaction</th>
<th>Immediate Value, Owing to Lower Operating Costs</th>
<th>Diminished Risk of Deterioration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizing SQL statements</td>
<td>Reduction of database load</td>
<td>Faster response times for certain transactions</td>
<td>Stretching hardware investments (e.g., database server and memory system)</td>
<td>Avoiding overloading the database system</td>
</tr>
<tr>
<td>Proactive data management (e.g., data avoidance, archiving, and reorganization)</td>
<td>Reducing database growth</td>
<td>Faster response times for certain transactions</td>
<td>Stretching hardware investments</td>
<td>Maintaining manageable database size</td>
</tr>
<tr>
<td></td>
<td>Shorter times for maintenance work on the database (e.g., backup/recovery, upgrade, migration, and system copy)</td>
<td>Shorter downtime during maintenance work</td>
<td>Fewer personnel requirements for maintenance work</td>
<td></td>
</tr>
</tbody>
</table>

Current Developments

With the development of the Internet, smartphones, and tablet computers, there has been a paradigm shift in the world of business software: software is no longer aimed at the highly specialized employee on his PC, but to users of the Internet (externally, or internally as an intranet) or the user of a mobile device. With SAP R/3, the traditional strategy of process automation was based on highly specialized users who accessed their SAP Enterprise Resource Planning (ERP) system from fixed work centers via installed SAP graphical user interfaces (GUIs). The role of these specialized agents, who had to be trained to use the software, is becoming unnecessary in many cases. Instead, the end user can have direct access to the enterprise’s SAP ERP systems via the Internet and mobile devices. Today, for example, the employees of many enterprises can enter their work and absent times, travel expenses, and so forth into the system themselves via the intranet, whereas previously, this would have been done by central users. Increasingly, customers order products directly
via the Internet and no longer by means of letters, faxes, or telephone calls to sales centers.

User expectations concerning the usability and performance of an Internet or mobile application are disproportionately higher than the traditional employee's expectations regarding their SAP ERP system. The employee relies on his own SAP ERP system; if it normally helps to make day-to-day work easier, it is accepted, and minor errors or weak points in performance are tolerated. The Internet user is quite different: if applications offered over the Internet do not work easily and effectively, users can immediately switch to the competition and, for example, make their purchases there—the competition is only a mouse click away. In addition, the Internet does not finish work at five p.m.; an e-business solution on the Internet must be available and work efficiently 365 days a year, 24 hours a day. Users of mobile applications apply the usability and performance standards they are accustomed to with other mobile apps to an SAP application.

With SAP HANA, SAP has succeeded in launching a product on the market that analysts today refer to as the most important innovation for years in the field of business software. The core element of the innovation is a main memory database around which additional services, such as an additional server referred to as XS Engine, are grouped. In this book, we tackle the SAP HANA database platform exclusively because practical experience is still lacking in relation to the additional services.

The most important argument in favor of introducing SAP HANA is performance. SAP HANA takes advantage of the availability of huge main memories and massive parallel processor architecture and consistently transforms them into performance by the most modern software architecture. You are perhaps wondering, do I even need a performance book if I have SAP HANA? Or does SAP HANA solve all performance problems? We are firmly convinced that the answer is no on both counts. On the one hand, even SAP HANA cannot perform miracles if your program reads complete database tables in the application server and—worse still—sends the data to the user's web browser. The lion's share of the runtime is then attributable to the application server, the network, and the browser. SAP HANA does not override the basic rules for efficient programming! A second no stems from the fact that every technical
introduction is confronted with "greed" or, in other words, challenges. One of these challenges is called \textit{Big Data}.

\textbf{Big Data}

By Big Data, we mean the phenomenon whereby more and more data of interest to companies is created, but which up to now, could only be evaluated and made available insufficiently, if at all. Examples of such data include posts in social networks; logs of web accesses; transaction data of persons (for example, via mobile positioning or posts with location data in social networks) and products (which, for example, are covered via RFID chips); data from cameras, microphones, and other sensors; financial transactions; and stock market data, as well as consumption data in the energy sector. Companies are eager to collect, link, and evaluate this data and thus gain valuable insights into their customers, markets, and products. A production engineer in the consumer goods industry can be used as an example here. In the future, he will be able to use not only past production figures and current orders, but also the current trends of social networks, to plan more effectively.

\textbf{Small "errors," major impact}

All of these data sources have in common that their quantity exceeds that of traditional business data (so-called master and transaction data) many times over. When transferred to our performance issue, this means that a non-performance-optimized system or program has a much greater impact than a "traditional" SAP Business Suite system. Thus, we conclude that performance know-how will continue to be a valuable asset in the future.

\textbf{IT services}

The demand for an open, flexible software architecture requires specialized, independently running software components that are linked via interfaces, which means a business process involves several software components. The constantly growing number of solutions and components presents an administrative challenge for data centers. The number of components has grown from the manageable SAP R/3 (with SAP instances, database, and hardware/operating system) to a constantly increasing range of technologies, including products that SAP does not produce but offers as a reseller.

Consequently, business process operators counteract this trend by integrating more and more service partners into the service and support processes. Outsourcing may involve only hardware (e.g., computer performance, hard disk memory, network resources, and so on), or it may
Introduction

also involve the application itself (i.e., application service providing, or ASP); for example, the services of an Internet product catalog can be completely allocated to a service provider instead of being operated by the catalog software in the enterprise. It is thus not only necessary to monitor hardware and software components, but monitoring must also go beyond company and component boundaries.

Overall, completely new requirements arise for administration and monitoring of SAP solutions—requirements that you cannot deal with using traditional concepts.

About This Book

The methods for performance analysis and optimization presented in this book reflect those initially used by experts in the EarlyWatch service and GoingLive Check and are included in the SAP Basis training courses ADM315 Workload Analysis and ADM490 Optimization of ABAP Programs. This is the seventh edition of this book, and with each new edition, we take the opportunity to thoroughly describe current trends in product development at SAP and, wherever relevant, to consider developments in the IT world in general.

In this edition, we have almost completely rewritten the Java topics and combined them in one chapter. Another new chapter is dedicated to the most important innovation from SAP for many years, SAP HANA, which initially focuses on the SAP HANA database platform. Other SAP HANA services are not yet dealt with due to a lack of practical experience. All other chapters have been revised and updated for this edition; for example, we describe the new ABAP load distribution concept (new to SAP NetWeaver 7.40) and have included the topic of background remote function calls (RFCs). We have also added a section on the SAP Sybase ASE database to Appendix A (Database Monitors).

Figure 2 presents the chapters of this book based on the five phases of performance optimization at a glance. Chapter 1 of this book, Performance Management of an SAP Solution, is intended for both SAP administrators and SAP consultants, as well as application developers and SAP project
leads. It discusses the following fundamental questions about performance analysis at a non-technical level:

- Which preventative measures must you take to guarantee the optimal performance of an SAP solution?
- What performance tuning measures should you take into consideration?
- Who is involved in the tuning process?

Figure 2 The Chapters of This Book

The service provided for the user frequently turns out to be a combination of a number of different services carried out by a network of partners.
Parts are provided by many different, sometimes external, service providers. To master this complexity, many service providers and customers implement service-level management (SLM). SLM calls for a structured, proactive method to ensure an adequate service level for the IT application users, taking into account both cost efficiency and the customer's business objectives. In this book, we'll describe the tools and methods used to implement SLM for an SAP solution.

Chapters 2-4 present performance analysis based on SAP NetWeaver Application Server (AS) ABAP. After reading this chapter, you will be able to perform a systematic performance analysis for AS ABAP, including databases and operating systems.

In this book, we initially follow the bottom-up analysis strategy, starting in Chapter 2, Monitoring Hardware, Databases, and ABAP Application Server, with an examination of the operating system, database, SAP memory management, and SAP work processes. At the same time, we provide solution proposals that should enable the administrator or consultant to solve the most important performance problems. For small and medium-size installations, this level of tuning is often sufficient.

Then, Chapter 3, Workload Analysis, discusses the more complex workload analysis as an example of top-down analysis. In Chapter 4, Identifying Performance Problems in ABAP Programs, you will find methods for analyzing individual programs using tools such as single-record statistics, SQL trace, and ABAP runtime analysis, among others.

The remainder of the book, Chapters 5-15, presents information necessary for a more in-depth performance analysis. These chapters are intended for SAP consultants responsible for the efficient functioning of large systems who need to reach the full tuning potential of their systems. These chapters are independent units to a large extent, and you can read them in any order once you are familiar with the content of the first four chapters. Any dependencies are shown at the beginning of each chapter.

Chapters 5-10 deal with the topics that relate to the application server and the presentation server:

- Chapter 5, Hardware Sizing and System and Load Distribution: This is the guide to avoiding hardware bottlenecks on the one hand, and
limiting the costs of unnecessary hardware on the other hand. Server consolidation—that is, the concentration of all services on a few powerful computers—has become an important IT market trend in recent years. We'll describe what you must take into account to use these technologies efficiently.

- **Chapter 6**, Memory Management: The configuration of the memory areas allocated by the SAP system has a considerable influence on performance.

- **Chapter 7**, Workload Distribution and Remote Function Calls: Optimal workload distribution of web, dialog, update, and background requests helps ensure efficient use of hardware and the avoidance of bottlenecks brought about by suboptimal configurations. Interface performance between software components also contributes greatly to the efficiency of the entire solution. E-business solutions that consisted solely of a monolithic R/3 system were rarely used, even in the past. Instead, open solutions that comprise several components connected to each other via interfaces are the standard.

- **Chapter 8**, SAP GUI and Internet Connection: Analysis and configuration recommendations demonstrate the optimization potential of linking GUIs (i.e., a classical SAP GUI or web browser) with the application. The chapter discusses performance aspects of SAP GUI controls, Internet Transaction Server (ITS), Business Server Pages, and Web Dynpro for ABAP in detail.

- **Chapter 9**, Locks: Database and SAP locks ensure data consistency. You can avoid bottlenecks in throughput with an optimized administration of locks (for example, with the ATP server or by buffering number ranges).

- **Chapter 10**, Optimizing Java Virtual Machine and Java Programs: This chapter contains the description of the tools with which you can perform the performance analysis of Java Virtual Machine (SAP JVM) and Java programs.

Chapter 11 introduces the series of chapters on database topics and is a prerequisite for Chapters 12-15:

- **Chapter 11**, Optimizing SQL Statements: Ineffective SQL statements make heavy demands on the database and can hamper the performance
of the entire application. In this chapter, we present a detailed analysis of “expensive” SQL statements, as well as optimization options via database indexes and program optimization (i.e., “five golden rules”).

▶ **Chapter 12**, SAP Buffering: Buffered tables on the application servers speed up access to frequently read data and help ease the load on the database.

▶ **Chapter 13**, Optimizing Queries to SAP NetWeaver Business Warehouse: SAP NetWeaver Business Warehouse queries are special SQL statements that usually process large quantities of data. Special optimization options exist for this type of queries.

▶ **Chapter 14**, Optimizing Search Queries Using TREX: You can use TREX for optimizing text-based and attribute-based search queries and SAP NetWeaver Business Warehouse queries (SAP NetWeaver BW Accelerator) instead of traditional database indexes and aggregation tables.

▶ **Chapter 15**, Optimization of Database Queries with SAP HANA: A separate chapter is dedicated to the new “child prodigy” from SAP, SAP HANA, which introduces the principles, tools, and methods for performance analysis and optimization.

Knowledge of performance optimization of SAP systems and applications is highly beneficial for SAP administrators, SAP application managers, SAP developers, and SAP project leads, and these are the target groups of this book. Every chapter first provides an introduction that is followed by a short section, “When Should You Read This Chapter?,” that specifies the target group of the chapter.

This book assumes theoretical and practical knowledge of the administration of SAP components in areas that involve the specific implementation of recommendations. You should be familiar with the use of the *Computer Center Management System* (CCMS), in particular. SAP NetWeaver Application Server ABAP System Administration (see Appendix E, Sources of Information) should serve as good preparation. Parts of this book (for instance, Chapters 4, 9, 11, and 12) also assume familiarity with the ABAP programming language, the functioning of relational databases, and SQL.

The book does not cover the following topics:

▶ **Hardware tuning and network tuning**
 Although this book helps you to identify bottlenecks in the CPU, main
memory, I/O, or network, a detailed analysis would require hardware or network provider tools. In view of the enormous number of products offered, we cannot include this subject (especially the tuning of hard disks).

- **Databases**
 In the CCMS, SAP offers tools that standardize most administrative and analysis tasks for different database systems. If you want to do more in-depth database tuning, however, you need to be familiar with the different database system architectures. It is not possible for this book to go into sufficient detail on the fine points of all database systems that can be used in conjunction with SAP solutions. However, this information is also unnecessary because reference material on tuning is available for all database systems. This book cannot replace these materials, nor does it endeavor to do so. Instead, the emphasis is on the SAP-specific context of database tuning and on explaining concepts common to all database systems. The specific examples used always refer to individual database systems. In Appendix A, you will find an overview of the most important monitors for analyzing database systems.

- **Application tuning**
 Many problems with performance can be solved only with detailed knowledge of the application and the individual SAP system modules. A change in customized settings often solves the problem. This book does not provide the know-how for tuning individual SAP system modules. However, it does provide you with analysis strategies so you can narrow performance problems down to certain applications and then consult the appropriate developer or consultant.

One question that was heatedly discussed prior to this book’s publication is the extent to which release-dependent and time-dependent information, for example, menu paths, recommendations for configuration parameters, and guide values for performance counters, should be included. Factors such as a new version, patches (for the SAP system component, database, or operating system), or a new generation of computers, among others, could render previous information obsolete overnight. In the worst-case scenario, outdated recommendations could even have negative effects on performance. We are aware of this risk. Nevertheless, we have decided
to include time-dependent information and rules in this book. This is
the only way you can use this book as a reference for daily work in SAP
administration. On the other hand, it is clear that this is not a book of fixed
rules and regulations, and anyone who views performance optimization
as mechanical rule following is mistaken. This book cannot replace direct
analysis of the solution, the SAP Help Portal, or up-to-date SAP Notes on
the SAP Service Marketplace. It aims only to support them.

All information on menu paths, references to performance monitor
screens, and guideline values for performance counters refer to SAP
NetWeaver 7.30, unless otherwise noted. At some points, we give a
preview of SAP NetWeaver 7.40.

In this book, you will find several orientation aids that are intended to
facilitate your reading of its contents.

Highlighted information boxes include content that is worth knowing and
useful, but which is also beyond the actual explanation. To enable you
to immediately classify the information in the boxes, we have marked
the boxes with symbols:

- The Tips marked with this symbol give you specific recommendations
 that can make your work easier.

- In boxes that are marked with this symbol, you will find information
 about additional topics or important content that you should remember.

- This symbol indicates features that you should note. It also warns you
 about common errors or problems that may occur.

- Examples identified by this symbol indicate scenarios from practical
 experience and demonstrate the presented functions.

As for previous editions, we will provide updates and, if necessary, cor-
rections to the book on the publisher’s website (www.sap-press.com).
With the analysis of hardware resources, the database, and the work processes and memory areas of SAP NetWeaver AS ABAP, we are going bottom-up into performance analysis. Get an initial overview of the current situation in the system.

2 Analysis of Hardware, Database, and ABAP Application Server

This chapter provides the basic information on analyzing the performance of your hardware, database, SAP memory configuration, and SAP work processes of SAP NetWeaver Application Server ABAP. Procedure roadmaps at the end of each section summarize the most important analysis paths and clarify when to use the various monitors. The last section describes the central Alert Monitor, which integrates the performance indicators from all areas.

This chapter will provide simple recommendations to help you optimize each component, except where in-depth explanations are required (these are given in subsequent chapters). Unnecessary background information is intentionally kept to a minimum so that even application consultants or system administrators with limited experience in performance analysis can use this chapter to improve the performance of their system. For example, we describe monitoring and customizing SAP extended memory without explaining SAP extended memory in detail. You can find more detailed information in Chapters 5-15. Our experience suggests that you can solve many performance problems in the operating system, database, and SAP Basis by using simple instructions, without delving into technical details.

When Should You Read This Chapter?

You should read this chapter if you want to use your SAP system to technically monitor and optimize the performance of your SAP system, database, or operating system.
2.1 Basic Terms

The terms **computer**, **server**, **application server**, **SAP instance**, **database**, **database server**, and **database instance** are used in this book as follows:

Computer
A **computer** will always mean a physical machine with a CPU, main memory, IP address, and so on.

SAP application instance
An **SAP application instance**, also referred to as an **SAP instance**, is an administrative unit: it consists of a set of SAP work processes that are administered by a dispatcher. It also includes a set of SAP buffers located in the host computer's shared memory and accessed by the work processes. An SAP application instance can be an ABAP application instance (**SAP NetWeaver Application Server ABAP**, referred to as **AS ABAP**), or a Java application instance (**SAP NetWeaver Application Server Java**, referred to as **AS Java**). There can be multiple SAP instances on one computer. As a result, there will be multiple dispatchers and sets of buffers. An **application server** is a computer with one or more SAP instances.

Database
Every SAP system has only one database. The term **database** refers to a set of data that is organized into files, for example. The database can be thought of as the passive part of the database system.

The active part of the database system is the **database instance**, an administrative unit that allows access to the database. A database instance consists of database processes with a common set of buffers in the shared memory of a computer. A **database server** is a computer with one or more database instances. A computer can be both a database server and an application server if a database instance and an SAP instance run on it.

In the SAP environment, there is normally only one database instance for each database. Examples of database systems in which multiple database instances can access a database are DB2 and Oracle Parallel Server. This book does not cover the special features of these **parallel database systems**.

SAP system
We refer to SAP software components that are based on SAP Basis as **SAP systems**. These are SAP ERP, SAP NetWeaver BW, SAP APO, SAP SRM, and SAP NetWeaver Portal.

According to this terminology, an SAP ERP system can consist of one or two systems, depending on whether the Java and ABAP parts run on
a joint system with one database (for example, SAP NetWeaver double stack) or on two systems with separate databases. This terminology also applies to SAP Solution Manager.

SAP documentation and literature use the term server in both a hardware sense and a software sense. Therefore, the term can refer to a computer, for example, in the term database server, and to a logical service, such as in the terms message server and ATP server. Thus, we also use ABAP server or Java server as short forms for SAP NetWeaver Application Server (AS) ABAP or Java.

2.2 Hardware Monitoring

The operating system monitor analyzes hardware bottlenecks and operating system problems. To start the operating system monitor for the application server you are currently logged on to, select the following menu:

Tools • **Administration** • **Monitor** • **Performance** • **Operating system** • **Local** • **Operating system monitor**

Alternatively, you can use Transaction ST06. The main screen of the operating system monitor appears.

The operating system monitor was revised for SAP Basis version 7.10. Since the revision, Transactions OS06, OS07, and ST06 open a monitor that you can use to monitor both the local and remote computers. For versions prior to 7.10, the new transactions are available under Transactions OS06N, OS07N, and ST06N; with Transactions OS06, OS07, and ST06, you can still access the older transactions. All information discussed in this book is also available in the old transactions. You can view the detail analysis by clicking the **Detail Analysis Menu button**.

You can also call the operating system monitor from the server overview:

Tools • **Administration** • **Monitor** • **System monitoring** • **Server** (Transaction SM51)

Then, position the cursor on the desired application server and, in the menu, choose **GoTo** • **Monitors** • **OS Monitor**.
The operating system monitor screen is divided into three areas (see Figure 2.1). In the top-left window, you can view the list of computers that are monitored. There, you can select a computer that you want to analyze. In the lower-left window, you select the analysis data. The window on the right contains data on the selected computer and analysis.

By default, the selection list shows all computers on which SAP ABAP instances have been installed. Essentially, any computer can be integrated into the remote operating system monitor, provided a monitoring agent has been installed on the relevant computer. We strongly recommend installing monitoring agents on computers that run a stand-alone database, an SAP Java instance, or a TREX.
You should install this monitor even if you use a tool from a different vendor to monitor utilization of your computers. If you need support from SAP, an SAP expert can analyze the computers only via the SAP monitor.

2.2.1 Analysis of a Hardware Bottleneck (CPU and Main Memory)

You will find an overview of the most critical operating system and hardware data under **SNAPSHOT** in the analysis selection of the operating system monitor (see Figure 2.1). All data is refreshed every 10 seconds by the auxiliary program **saposcol**. To update the data on the screen (after 10 seconds or longer), you need to click the corresponding button.

Under the header CPU, you will find the fields **User Utilization**, **System Utilization**, and **Idle**. These values indicate the percentage of total CPU capacity currently being used by user processes (i.e., the SAP system, database, and other processes), the percentage being used by the operating system itself, and the percentage not being used. The **Number of CPUs** field indicates the number of CPU threads. **Average Processes Waiting** is the average number of work processes waiting for a free processor. This value is indicated as averaged over 1, 5, and 15 minutes. The other values in the CPU header are of less importance for the performance analysis. Table 2.1 provides an overview of the fields of the operating system monitor.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Utilization</td>
<td>CPU workload caused by user processes (SAP system, database, etc.).</td>
</tr>
<tr>
<td>System Utilization</td>
<td>CPU workload caused by the operating system.</td>
</tr>
<tr>
<td>Idle</td>
<td>Idle CPU capacity. This value should be at least 20%, but ideally at least 35%.</td>
</tr>
<tr>
<td>Number of CPUs</td>
<td>Number of CPU threads.</td>
</tr>
<tr>
<td>Average Processes Waiting</td>
<td>Number of processes waiting for CPUs, averaged over 1, 5, or 15 minutes.</td>
</tr>
<tr>
<td>Physical Memory</td>
<td>Available physical main memory (RAM) in KB.</td>
</tr>
</tbody>
</table>

Table 2.1 Operating System Monitor Fields
As a description of the computer equipment, you can find the following specifications, for example: "2 processors, 8 cores, 16 threads, processor of manufacturer X with 2.93 GHz clock speed." What does this information on the number of processors, cores, and threads mean for the SAP system?

The term processor refers to the central processing unit (CPU) of a computer, which is capable of executing programs. Here, a distinction is made between single-core processors and multicore processors. Multicore processors have multiple fully developed processing cores on one chip. The individual cores share only the bus; that is, they are considered full CPUs. Multithreaded CPUs have one CPU, but register as multiple CPUs on the operating system. As a result, various queues exist for these cores between which the core switches. To optimize this switching, each thread has its own register set, including a stack pointer and program counter, so you can switch among the threads without additional processor cycles. These hardware-based threads should not be confused with the threads that generate the application processes (that is, user or software threads). Within a process of the database or the ABAP, Java, or TREX server, you can generate multiple (software) threads that the operating system executes in time slices. The switch between the (software) threads is referred to as a context switch. Considering this, it can be assumed that additional (hardware) threads promote context switches among (software) threads and therefore support a better utilization of the existing core; however, the increase in performance doesn't fully come up to an additional core.

The MEMORY header contains information on the available physical main memory (PHYSICAL MEMORY field) and values of the operating system paging.

Under the SWAP HEADER, the amount of currently allocated swap space is listed. The swap space must be greater than the total of the configured memory area.

If the sum of the physical memory and swap space is smaller than the total amount of memory required by the SAP system, database, and other programs, this may cause program terminations or even operating system failure. You should therefore ensure that there is sufficient swap space.

To display the CPU workload over the previous 24 hours, select the analysis

History: CPU and main memory

Program Terminations Due to Memory Shortage

Main memory utilization and swap space
column headers are the same as in the fields under CPU in the operating system monitor initial screen, except that the values are for one hour. Similar overview is available for main memory usage (Previous Hours • Memory) for the swap space, and so on.

When Is There a CPU or Main Memory Bottleneck?

The unused CPU capacity Idle should normally average at least 20% per hour. This enables the system to accommodate temporary workload peaks. A reading of 35% idle CPU capacity is even better. For the paging rate, the following guideline values apply:

- For computers that contain a database, Java instance, or TREX, only very minor paging rates should occur; that is, they should be dimensioned in such a way that the available main memory corresponds to the configured memory areas.

- For computers that include only ABAP instances, you can tolerate moderate paging rates of up to 20% of the physical main memory per hour.

For operating systems that page continuously (for example, Microsoft Windows), the value indicated in the operating system monitor as the **paged-in rate** is the key statistic on paging performance. For other operating systems that page only when necessary (such as most UNIX derivatives), the key statistic is the **paged-out rate**. If the operating system monitor sometimes shows values that exceed these guideline values, this does not automatically mean you have a hardware bottleneck. Rather, you should use the workload monitor to check whether the high CPU workload or the paging rate is associated with poor response times. Corresponding analyses can be found in Chapter 3, Section 3.4.1, Analyzing General Performance Problems.

If you observe high paging rates on several computers, you should calculate the virtual main memory allocated by the SAP instances and the database (see Sections 2.4.3 Displaying Allocated Memory and 2.3.2 Analyzing the Database Buffer). Compare this with the available physical main memory. As a rule of thumb, there should be approximately 50% more virtual memory than physical memory.
In Microsoft Windows and Oracle Solaris operating systems, the analysis of the paging rate on the database server can lead to misinterpretation because in these operating systems, read/write operations (I/O) can sometimes be counted as paging. For more information on this issue, please refer to SAP Notes 124199 (Solaris) and 689818 (Windows).

Causes of Hardware Bottlenecks

If you detect a hardware bottleneck on one or more SAP system computers, it may be due to one or more of the following causes:

- **Incorrect load distribution**
 In a distributed system with multiple computers, if you discover a hardware bottleneck on at least one computer while other computers have unused resources, the workload is probably not optimally distributed. To improve performance, redistribute the SAP work processes and the user logons.

 It is extremely important that the database server has enough resources. A CPU or main memory bottleneck on the database server means the required data cannot be retrieved quickly from the database, which causes poor response times in the entire system.

- **CPU load of individual programs**
 In the operating system monitor (Transaction ST06), select the analysis **SNAPSHOT • TOP CPU PROCESSES**. The overview of the operating system processes is displayed. Here, you can see all currently active processes and their demands on resources.

 Figure 2.2 shows an overview of a system on which an ABAP instance and a DB2 database are installed. You can identify the following processes:

 - **dw_<instance>**: SAP work process of the SAP ABAP instance on a UNIX operating system. On Windows operating systems, the name is **disp+work**.

 - **db2sysc**: Database process of DB2 database. The processes of other databases normally carry the brand name (such as Oracle), which appears in the process or user name.
Operating system processes, which you can identify from the following elements of the name, are also part of SAP instances:

- **jstart**: Server process of SAP Java instance.
- **TREX**: TREX process. The server type is indicated in the process name, for instance, index server, preprocessor, and so on.
- **icman**: Process of the Internet Communication Manager (ICM).
- **saposcol**: Auxiliary program, which collects the data for the operating system monitor, for example.

![Figure 2.2](image)

Figure 2.2 Analysis of the Top CPU Processes in the Operating System Monitor

To check whether individual processes are placing a heavy load on the CPU for long periods of time, refresh the monitor periodically and observe any changes in the value **CPU (%)**. If the processes that place a heavy load on the CPU entail processes of SAP Basis or the database, the subsequent specified monitors provide further information on the processes' activities.
Start the monitor in a second mode, identify the process with the heavy CPU load using the process ID, which you can also find in the corresponding basis monitors, and check the monitors to determine which program or tables, queries, and so on are being processed by the process.

- **SAP work processes of ABAP instance**
 Open a new user session and call the local work process overview (see Section 2.5, Analyzing SAP Work Processes). From the work process overview, note the name of the ABAP program and the user corresponding to the process identifier (PID).

- **Server process of Java instance**
 Open the SAP Management Console (see Chapter 10, Section 10.3, SAP Management Console). Use a thread dump to obtain process-internal information.

- **TREX processes**
 Open the TREX administration tool (see Chapter 14, Section 14.2). You can find details on the TREX services in the SERVICES monitor.

- **ICM**
 Open the ICM monitor (see Section 2.6, Analysis of the Internet Communication Manager [ICM]).

- **Database processes**
 Open the database process monitor in the Database Administration (DBA) Cockpit (see Section 2.3.3, Identifying Expensive SQL Statements) to identify the SQL statements that are being processed by the database.

Using the operating system monitor in conjunction with the monitors mentioned, you can fairly easily identify programs, transactions, SQL statements, or TREX queries that cause high CPU load.

A CPU bottleneck can be caused by external processes. In the operating system monitor, if you find external processes (that is, processes that are not part of the SAP system) with high CPU consumption that cause a CPU bottleneck, you should find out whether these processes are really necessary for your system or whether they can be switched off or moved to another computer. The following are examples of external processes:
administrative software, virus scanners, backups, external systems, screen savers (!), and so on.

Identifying a CPU bottleneck

Suppose you notice a CPU bottleneck during times of peak user activity. The process overview in the operating system monitor reveals a single SAP work process that is causing a CPU load of 30% over several minutes. At the same time, the SAP work process overview shows a long-running background program. You should try to see if the background program could be run at a time when the dialog load is lighter.

To identify programs with high memory requirements that may be causing a main memory bottleneck, you can use a method similar to that previously described for CPU bottlenecks. See also Chapter 6, Memory Management.

Operating systems normally administer their own *file system cache*. This cache is located in the main memory, where it competes for memory space with the SAP system and the database. If the cache is too large, it causes high paging rates, even though the physical main memory is more than large enough to accommodate both the SAP system and the database. SAP recommends reducing this cache to 7-10% of the physical memory.

The operating system parameters for configuring the file system cache include `dbc_max_pct` for HP-UX, `ubc-maxpercent` for Digital UNIX, and `maxperm` for AIX.

To reduce the size of the file system cache for Microsoft Windows, call the network settings (symbol: NETWORK) in the Control Panel of your Windows operating system. Select the tab SERVICES, the service SERVER, and the PROPERTIES button. In the following screen, under the screen area OPTIMIZATION, select the MAXIMIZE THROUGHPUT FOR NETWORK APPLICATIONS option, and confirm by clicking OK. You must reboot the computer to activate the file cache's new settings.

A main memory bottleneck creates excessive paging, which in turn requires more processor use and can lead to a CPU bottleneck. Removing the cause of excessive paging usually makes the CPU bottleneck disappear.
2.2.2 Identifying Read/Write (I/O) Problems

In the operating system monitor (Transaction ST06), you’ll find in the analysis view **SNAPSHOT • DISK**, among other things, information on hard drive load and (if the operating system makes it available) information on the drives' wait and response times.

By double-clicking a row in the hard drive monitor, you can display an overview of the average response times over the previous 24 hours for the selected hard drive. Table 2.2 lists the displayed fields and their significance.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk</td>
<td>Operating system name of the hard disk.</td>
</tr>
<tr>
<td>Utilization (%)</td>
<td>Load on the hard disk (in %).</td>
</tr>
<tr>
<td>Queue Length</td>
<td>Number of processes waiting for I/O operations.</td>
</tr>
<tr>
<td>Wait Time (ms)</td>
<td>Wait time (in ms).</td>
</tr>
<tr>
<td>Service Time (ms)</td>
<td>Service time (in ms).</td>
</tr>
<tr>
<td>Transfer (Kbyte/s)</td>
<td>Transfer rate (in Kb/second).</td>
</tr>
<tr>
<td>Operations (per Sec)</td>
<td>Number of I/O operations (per second).</td>
</tr>
<tr>
<td>Response Time (ms)</td>
<td>Average response times of the hard disk (in ms).</td>
</tr>
</tbody>
</table>

Table 2.2 Fields of the Hard Disk Monitor

If you determine via these monitors that individual drives are heavily loaded (**LOAD (%) > 50 %**), a potential **I/O bottleneck** exists. However, you can gain only limited information about I/O problems from the SAP system. To perform a more detailed analysis, you need tools provided by the hardware manufacturer.

An I/O bottleneck is particularly critical if it is on the hard drive on which the operating system's paging file resides. The operating system monitor is recommended particularly for the database server. To prevent bottlenecks during read or write operations to the database, use the database performance monitor and the hard drive monitor. For further details on these problems, please see Section 2.3.4, Identifying Read/Write (I/O) Problems.
2.2.3 Further Analysis at the Operating System Level

For UNIX operating systems, the SAP system logs all operating system parameter changes. The change log can be displayed via the following path in the operating system monitor: Other Functions • Parameter Changes. Place the cursor over the name of a server and click the History of File button. This log lets you determine whether the start of performance problems can be linked to the time when particular parameters were changed.

With the Other Functions • LAN Check by Ping tool, you can carry out a quick test on the network. Select any database server, application server, or presentation server and test the network connection (for example, response times or whether there was any data loss). Although the analysis is incorrectly called LAN check, you can also address computers in WAN. You can find an example of an analysis with this tool in Chapter 8, Section 8.1.2, Analyzing and Optimizing the Performance of GUI Communication.

Summary

Performance problems may be indicated if at least one of the following items are true:

- The average idle CPU capacity is less than 20% every hour.
- More than 20% of the physical main memory is paged every hour.
- Utilization of individual hard drives is more than 50%.

Excessive utilization of the hard drives, particularly on the database server, can cause system-wide performance problems. To check whether the high CPU load or paging rate significantly damages response times in the SAP system or database, use the workload monitor (see Chapter 3, Section 3.4, Performing Workload Analyses).

Figure 2.3 and Figure 2.4 show the procedure for analyzing a hardware bottleneck: a common solution for resolving bottlenecks is to redistribute the workload (for example, move work processes). Possible causes of a CPU bottleneck include inefficient applications, which can usually be identified in the database process monitor and work process overview, and external processes that do not belong to an SAP instance or the database instance. You should always perform a complete performance
analysis before deciding whether the existing hardware is sufficient for SAP system demands.

Figure 2.3 Detailed Analysis of a Hardware Bottleneck (CPU)

Figure 2.4 Detailed Analysis of a Hardware Bottleneck (Main Memory)
The roadmaps in Figure 2.3 and Figure 2.4 show the procedure to follow in the event of a hardware bottleneck. They refer to monitors and analyses described later in this book. You will find similar roadmaps throughout this book.

2.3 Database Monitoring

SAP NetWeaver Application Server (AS) can currently be operated with eight different relational database systems, as well as with the main memory database SAP HANA. Even if these database systems all have a different architecture, performance problems can still occur independently of the database system used. To help customers analyze and tune their databases, SAP NetWeaver AS ABAP has its own database monitor with basic functions that work independently of the database system used.

In this section, we present the steps of database performance analysis based on an Oracle database. In Appendix A, you will find information and notes on the other databases, as well as more details on Oracle databases. Chapter 15, Optimizing Database Queries with SAP HANA, deals with the SAP HANA main memory database.

The most important functions that you require for performance monitoring of the database include the following:

- Overview of the database buffers’ status
- Overview of the currently running database operations, particularly the SQL statements
- Statistics on the executed SQL statements and their costs
- Overview of the distribution of read and write accesses at the logical (tablespaces) and physical level (for example, container for DB2 for Linux, UNIX, and Windows or datafiles for Oracle) and thus about the hard drives
- Overview of the current lock situations
Locks on database tables or business objects are a prerequisite for consistent data. If locks are held too long, performance problems may occur in the system because users and processes have to wait for the locks to be released. This chapter presents the lock concepts and their monitoring in detail.

9 Locks

In an SAP system, many users can simultaneously read the contents of database tables. For changes to the dataset, however, you must ensure that only one user can change a particular table’s content at a time. For this purpose, table content is locked during a change operation. The first section of this chapter introduces you to the concept of locking for SAP and database systems.

If locks remain in place for a long time, wait situations can occur, limiting the throughput of the SAP system. The second section of this chapter deals with the general performance aspects of using locks.

The SAP system uses special buffering techniques for availability checking with Available to Promise (ATP) logic and for document number assignment, which minimize the lock time and maximize the throughput. These techniques will be discussed in the third and fourth sections.

When Should You Read This Chapter?

You should read this chapter to help you do the following:

- Find out more about database locks and SAP enqueues
- Analyze system problems that are caused by database locks or enqueues

This chapter does not offer instruction on programming SAP transactions. Use ABAP textbooks or SAP Help for this.
9.1 Lock Concepts of Database System and SAP System

The consistency of the data in a database or SAP system is achieved by locks. The lock concepts of SAP and database systems have the same ultimate purpose of preserving data consistency, but they are based on different technologies and used in different situations. Locks that the database system manages are known as database locks, and locks that the SAP system manages are known as SAP enqueues.

[Ex] Ordering a Computer

When you configure and order a new computer, you must check that all necessary components are available—for example, housing, CPU, main memory, hard drive, and so on. The “all-or-nothing” principle applies: when a component is sold out, the availability of the entire computer cannot be confirmed. Since you usually check the availability of the various components in succession, you want to be certain that other users do not access the already checked and approved components until the whole order has been finally confirmed or canceled.

9.1.1 Database Locks

Database locks are managed by the lock handler of a database instance. The locked entity is typically a row in a database table (special exceptions are explained at the end of Section 9.2.1, Database Locks). Database locks are set by modifying SQL statements (UPDATE, INSERT, or DELETE) and by the statement SELECT FOR UPDATE. Locks are held until the SQL statement COMMIT (database commit) finalizes all changes in the database and then removes the corresponding database locks. The time interval between two commits is called a database transaction. A program can undo the effects of all modifying SQL statements by executing a database rollback with the SQL statement ROLLBACK. In this case, all database locks are also removed.

[Ex] Ordering a Computer (Continuation)

The aforementioned example of the availability check when ordering a computer using database locks is achieved in programming with the SQL statement SELECT FOR UPDATE: a particular item of travel data is read and locked.
with this statement. When this check has been successfully performed for all components, the data is then changed (with an `UPDATE` in the relevant table rows), and then the `COMMIT` command is used to finalize changes and release all locks. Once a lock has been set, other users can still read the affected data (a simple `SELECT` is still possible), but they cannot lock it. Neither an `UPDATE` nor a `SELECT FOR UPDATE` can be performed. Such a lock is known as `exclusive`.

After a transaction step, the SAP work process automatically triggers a database commit (or a database rollback). This removes all database locks. This means a database lock is not held during multiple transaction steps (via multiple input screens in the SAP system).

9.1.2 SAP Enqueues

To hold locks during multiple steps of an SAP transaction, use SAP enqueue administration. Work processes in the enqueue table, located in the main memory, manage SAP enqueues. To retain these enqueues even when an SAP instance is shut down, save them in a local file on the enqueue server.

An SAP enqueue locks a logical object. Therefore, an enqueue can lock rows from several different database tables if these rows form the basis of a single business document. An SAP enqueue can also lock one or more complete tables. SAP enqueue objects are created and modified in the ABAP dictionary (dictionary section `Lock Objects`). They are closely related to the concepts of `SAP transaction` and `SAP logical unit of work` (SAP LUW). Both of these are described extensively in the ABAP literature for dialog programming. Therefore, this chapter will not discuss the functions and uses of these techniques as part of ABAP programs. Rather, we will focus on aspects related to performance analysis. If you discover performance problems caused by the incorrect use of SAP enqueues, consult the responsible ABAP developer.

An SAP enqueue is a logical lock that acts within the SAP system. If a row in a database table is locked by an SAP enqueue, it can still be changed by an SQL statement executed from the database or by a customer-developed ABAP program that does not conform to SAP enqueue conventions. Therefore, SAP enqueues are valid only within the SAP system. Database locks,
in contrast, resist all change attempts. They lock a table row “tight” for all database users and prevent changes by users outside the SAP system.

For each object that can be held by an enqueue, there are two function modules: an enqueue module and a dequeue module. An SAP enqueue is set explicitly within an ABAP program by an enqueue function and is explicitly released by a dequeue function module. As a result, SAP enqueues can be held in place through multiple transaction steps. When an SAP transaction is completed, all SAP enqueues are automatically removed.

Ordering a Computer (Continuation)

Using our example of computer configuration and ordering, we will explain how SAP enqueue management works. A computer consists, for example, of the housing, CPU, main memory and hard drive. The individual components are edited on different input screens—that is, with several transaction steps—and are locked for editing by SAP enqueues. After determining the availability of each component, you can confirm the order for the entire computer. This concludes the dialog part of the transaction.

Under the protection of the enqueues, an update work process then transfers the changes to the database tables. When the update has been completed, the SAP LUW is finished, and the enqueues are unlocked.

An SAP LUW can also contain program modules that require a V2 update. An SAP enqueue is not used for this. You should not use modules that use this V2 update to process data that requires the protection of enqueues (also see Chapter 7, Section 7.1.8, Update).

Table 9.1 compares the main features of database locks and SAP enqueues.

<table>
<thead>
<tr>
<th>DB Locks</th>
<th>SAP Locks (Enqueues)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locked object</td>
<td>Individual rows of a database table</td>
</tr>
<tr>
<td>How object is locked</td>
<td>Implicitly, using modifying SQL statements (such as UPDATE and SELECT FOR UPDATE)</td>
</tr>
</tbody>
</table>

Table 9.1 Features of Database Locks and SAP Enqueues
In this section, you will find information on how to monitor database locks and SAP enqueues.

9.2.1 Database Locks

What happens in the event of a lock conflict—that is, when a work process wants to lock an object that is already locked? With database locks, the second process waits until the lock has been removed. This wait situation is known as an exclusive lock wait. Most databases do not place a time limit on these locks. If a program fails to remove a lock, the wait situation can continue indefinitely.

This could become a major problem if the program fails to release a lock on critical SAP system data, such as the number range table NRIV. There is a danger that one work process after another will be waiting for this lock. If all work processes are waiting, no work process is available to allow you to intervene from within the SAP system. If you can identify the program holding the problem lock, you can terminate it through the operating system as a last alternative.
Locks

To monitor current lock wait situations, call the database-lock monitor (Transaction DB01), which you can start from the DBA Cockpit (Transaction DBACOCKPIT) by selecting PERFORMANCE • WAIT SITUATIONS ON LOCKS AND DEADLOCKS or from the system-wide work process overview (Transaction SM66) by selecting GoTo • DB LOCKS.

For a description of this monitor and information on how to troubleshoot lock wait situations, see Chapter 2, Section 2.3.5, Other Database Checks. Lock wait situations increase database time and result in high database times in workload-monitor statistics. Some database systems explicitly monitor lock wait times, which you can view in the database performance monitor.

[Ex] Lock Situation in the Database

With the following sample program, you can provoke a lock situation in the database:

```
REPORT zts_lock.
DATA: lv_text type natxt.
SELECT SINGLE FOR UPDATE text FROM T100 INTO lv_text WHERE sprs1 = 'DE' AND ARBGB = '00' AND msgnr = '001' .
BREAK-POINT.
```

To do so, proceed as follows:

1. Start the program in the ABAP Workbench (for instance, via Transaction SE38). After a few seconds, the debugger opens, and the program stops at the BREAK-POINT command. Before that, the program has set a database lock using the SELECT SINGLE FOR UPDATE command. Since the program waits in the debug mode, this database lock is not undone.

2. Open a second session and restart the program. An hourglass is displayed in the second session.

3. Again, you can restart the program in a third session, and the system again displays an hourglass.

4. Open another session and start the database lock monitor as previously described. The lock situation is displayed, and you can see which work process holds the lock and which one waits. Based on the work process overview (Transaction SM50) and the database process monitor, you can now analyze what happens in the process that holds the lock. In this example, the process overview displays the STOPPED status and gives DEBUG as the reason.
5. Go to the debugger, where you continue the execution of the program in the first session. The program is terminated, and the database lock is undone due to an implicit commit or rollback of the database interface. As a result, the program can continue in the second session, which had to wait at the `SELECT SINGLE FOR UPDATE` command up to now. Within a very short period of time, it will thus reach the `BREAK-POINT` command and start the debugger.

6. Continue the program in the debugger for the second session and, if you started the program in further sessions, in these sessions to release the locks.

Basically, you should set programs to request locks as late as possible. It is preferable for a program to read and process data from the database before setting locks or making changes in the database. This is illustrated in Figure 9.1. The top part of the diagram shows how several changes are made during a database transaction and how, as a result, database locks are held for too long. The lower part of the diagram shows a more appropriate programming method: the transaction is programmed so that it collects the changes in an internal table and then transfers these changes to the database as a group at the end of the transaction. This reduces the lock time in a database.

![Figure 9.1 Locks Should Be Set as Late as Possible](image-url)
Performance problems due to delays in releasing locks frequently occur when customers modify the programming of update modules. The separation of update modules from dialog modules is an attempt to reduce the number of locks needed in the dialog part of a transaction because changes to the database and the associated locks are mainly the task of the update modules. However, sometimes the update module is modified—for example, to supply a customer-developed interface with data. This modification may cause problems if the update module has already set locks and, for example, the modification generates expensive SQL statements. The locks cannot be released until the SQL statements are fully processed, and lengthy lock waits may result.

Another source of problems with locks is background programs that set locks and then run for several hours without initiating a database commit. If dialog transactions need to process the locked objects, they will be forced to wait until the background program finishes or initiates a database commit. To solve this problem, you should ensure that the background program either initiates a database commit at regular intervals (without sacrificing data consistency) or runs only when it will not interfere with dialog processing. Similar problems may occur when background jobs are run in parallel—that is, when a program is started several times simultaneously. Parallel processing is recommended only when the selection conditions of the programs do not lock the same data.

While you are working in the ABAP debugger, database commits are generally not initiated, and all locks stay in place until you are finished. You should therefore avoid using the debugger in a production SAP system.

Deadlocks

We'll now present an example of a situation known as a deadlock. Assume that work process one and work process two both want to lock a list of materials. Work process one locks material A, and work process two locks material B. Then, work process one tries to lock material B, and work process two tries to lock material A. Neither work process is successful because the materials already have locks on them. The work processes block each other. A deadlock is identified by the database instance and solved by sending an error message to one of the work processes. The corresponding ABAP program is terminated, and the error is logged in the SAP syslog.
You can avoid deadlocks with correct programming. In our example, the program should be changed so that its internal material list is sorted before any locks are set. Then the lock on material A will always be set before the lock on material B. Therefore, programs requiring the same materials are serialized and not deadlocked.

Deadlocks should occur very rarely. Frequent deadlocks indicate incorrect programming or configuration of the database instance.

If, in some database systems (for example, DB2 and SAP MaxDB), a work process places single-row locks on more than 10% of the single rows in a table, the locks are automatically replaced by table locks. Here, the database decides that it is more efficient to lock the entire table for a work process than to maintain several locks on individual rows. Table locking has consequences for parallel processing in background jobs, where each program is intended to update a different part of the same table at the same time. It is not possible to schedule background jobs so that one updates the first half of the table and the other updates the second half because the database may decide to lock the table exclusively for one of the jobs. One program that is particularly affected by this is the period closing program in materials management.

Table Locks

There are database parameters you can use to specify when the database should convert single-row locks to a table lock.

Sometimes, the database locks entire tables for administrative reasons. This happens when indexes are created or when particular tables and indexes are analyzed—for example, during the Oracle analysis `VALIDATE STRUCTURE`. If these actions are performed during production operation, substantial performance problems may result.

9.2.2 SAP Enqueues

SAP enqueues are managed in the enqueue table located in the global main memory of the enqueue server. The work processes in the enqueue server directly access the enqueue table; the enqueue server also carries out lock operations for work processes from other application servers, which are communicated via the message service (1 and 2 in Figure 9.2).
The following abbreviations are used in Figure 9.2: DIA for dialog work process, ENQ for enqueue work process, and ENQ tab for enqueue table.

For work processes in the enqueue server, setting and releasing locks takes less than 1 millisecond; for work processes in other application servers, it takes less than 100 milliseconds.

If an SAP enqueue is requested but already held by another user, the attempt to set a lock is rejected and an error message is sent back to the ABAP program. The application developer has to decide how to deal with this error message with suitable programming. For programs in dialog mode, the error message is normally forwarded to the user, for example, with the message “Material X is locked by user Y.” For background programs, you will normally attempt to set the lock again later. After a certain number of unsuccessful attempts, an error message is written to the program log.

If SAP enqueues are held for too long, performance problems can arise because after a failed attempt, the user will repeat the entry. Take, for example, a user who needs to process a material list, and to do so needs to set 100 SAP enqueues. If the attempt to set lock number 99 fails, the program is interrupted with the message “Material number 99 is locked,” and all of the previous system work is in vain and must be repeated. Therefore, rejected enqueue requests lead to higher system workload and restrict the throughput of transactions.
You can get an overview of all currently active SAP enqueues by using Transaction SM12, under the following menu:

TOOLS • ADMINISTRATION • MONITOR • LOCK ENTRIES

Start the test programs under the following menu to diagnose errors:

EXTRAS • DIAGNOSE or EXTRAS • DIAGNOSE IN VB

If errors are identified, check the SAP Service Marketplace for notes, or contact SAP directly.

You can view statistics on the activity of the enqueue server with the menu option EXTRAS • STATISTICS. The first three values show the number of enqueue requests, the number of rejected requests (unsuccessful because the lock requested was already held by another), and the number of errors that occurred during the processing of enqueue requests. The number of unsuccessful requests should not be more than 1% of the total number of enqueue requests. There should be no errors.

9.3 Number Range Buffering

With many database structures, it is necessary to be able to directly access individual database records. You do this with a unique key. Number ranges assign a serial number that forms the main part of this key. Examples of these numbers include order numbers and material master numbers. SAP number range management monitors the number status so that previously assigned numbers are not re-issued.

9.3.1 Fundamentals

A business object for which a partial key must be created using the number range is defined in the SAP system as a number range object. A number range contains a number range interval with a set of permitted characters. The number range interval is made up of numerical or alphanumeric characters and is limited by the FROM-NUMBER and TO-NUMBER fields. You can assign one or more intervals to a number range.

The current number level of a range, which is the number that is to be assigned next, is stored in the database table NRIV. If a program needs...
Index

A

ABAP, 465, 468, 787
 web services, 372
ABAP application instance, 76, 265
ABAP Class Builder, 553
ABAP class library, 778
ABAP debugger, 183, 210, 226
ABAP Dictionary, 107, 480, 481, 503, 521, 551, 787
display, 778
maintenance, 778
table, 778
ABAP Editor, 296, 512, 778
ABAP/heaplimit, 169
ABAP instance, 344
ABAP List Viewer, 205
 Control, 348
ABAP objects, 553
ABAP program, 495, 501
 quality analysis, 216
 runtime analysis, 188
ABAP program termination, 291
ABAP repository information system, 778
ABAP runtime analysis, 201, 203, 226, 496
 runtime error, 779
 Web Dynpro applications, 202, 376
ABAP server, 155
 statistics, 147
ABAP shared object, 293
ABAP trace, 65, 183, 201
 summary, 208
 single-transaction analysis, 209
 variants, 205
ABAP web service
 performance analysis, 373
ABAP Workbench, 216, 386, 515, 778
 BSP development, 369
Access plan, 748
ACID principles, 787
Action profile, 176

Activation queue, 720
Active data, 720
Active session history, 100
Activity, 169
Adaptive Computing Controller, 258
Address space, 270, 787
Administration tool
database, 516
Agent, 173, 746, 748
Agent private memory, 746
Aggregate, 467, 603, 609, 651, 659, 681
 compress, 611
 create, 606
 functions, 497
 indexing, 610
 maintenance, 609, 610
 suggestion, 608
Aggregation, 206
Alert, 136
Alert messaging
 automatic, 141
 monitor, 787
 server, 622, 627, 638
Allocation analysis, 424
Allocation rate, 429
Allocation trace, 457
American National Standards Institute (ANSI), 787
Analysis linguistic, 619, 664
Analysis method, 135
Analytical applications, 562
APO server, 261
Appliance, 664
Application analysis, 145
 business document volume, 779
Application buffer, 559
 monitor, 279, 551
 object-oriented, 521
Application error, 294
Application level, 38
Application Link Enabling (ALE), 787
 Administration, 777
Application monitor, 779
Index

Application optimization, 20
Application server, 41, 76, 155, 195, 787
Application Service Providing (ASP), 25
Application support layer, 746
Application tuning, 61, 30
Archiver stuck, 108, 164
Array fetch, 192
ATAB, 516
ATP logic, 398
ATP server, 304, 398, 400, 403
ATP service, 262, 303
Attribute, 563, 569, 575
display attribute, 569
navigation attribute, 569
Attribute index, 44
Attribute vector, 669, 677
Automatic workload repository, 100
Auto-reaction method, 141
Auxiliary storage pool, 282
Availability, 47, 176, 303
Availability check, 398, 553
Average response time, 170

B

Background job
 scheduling monitor, 777
Background load, 165
Background processing, 787
 analysis, 778
Background program, 230, 388
Background service, 262, 302, 304
Backup, 48, 49, 53
Backup index server, 642
Bandwidth, 674
BAPI, 787
Batch input, 230
Benchmark, 242, 245, 795
BEx analyzer, 565
BEx web analyzer, 565
bgRFC monitor, 338
Big Data, 24, 663
Binary search, 677, 730
Blade server, 664
Block, 92
Bottleneck analysis, 145, 306
Browser, 787
BSP applications
 runtime analysis, 202, 376
B* tree, 590
Buffer, 43, 91, 521
 access, 526
 attribute index, 44
 buffer hierarchy, 44
 catalog buffer, 746
 communication buffer, 746
data base buffer, 44
data buffer, 92
data model-oriented, 44
get, 465
management, 526
metadata buffer, 742
object-oriented application buffer, 44
operating system buffer, 44
package buffer, 746
pool, 746
process buffer, 741
quality, 92, 110
setting, 114, 515
single-record buffer, 526
status, 539
storage subsystem, 44
synchronization, 528, 558, 777
synchronization monitor, 549
TABL, 526
table buffer, 44, 526, 557
TABLP, 526
trace, 188, 197
types, 44, 521, 523
Business hours, 53
Business process, 47
Business Server Pages (BSPs), 39, 347, 357, 367
Button, 788
BW Administrator Workbench, 591, 595, 608, 652, 777
BW aggregate maintenance, 777
BWA index, 652
 checking and switching off, 653
 maintain, 654
BW check report, 777
BW query, 562, 565
analysis, 580
background print, 601
BW Query Monitor, 777
BW workload statistics, 579

C
Calc engine, 684
CALL, 272
Catalog buffer, 556
Catalog cache, 732, 746
CA Wily Introscope, 65, 452, 457
Enterprise Manager, 454
WebView, 454
Workstation, 454
Central monitoring system, 174
Central SAP monitor, 65, 778
Central single-record statistics, 218
Change, 537, 545
Change and Transport Organizer, 788
Change and Transport System, 531
Change Log, 720
Change request, 531
Change run, 612, 656
Changing secondary indexes, 487
Characteristic, 563, 575
Characterizing parameters, 146
Checking group, 401
Checkpoint, 92
Check set, 627
Class loader, 409
Class statistic, 457
CLEAR statement, 213
Client, 788
Client destination statistics records, 333
Client/server architecture, 38
scalability, 46
Client statistics records, 333
Cloud application, 662
Cluster coding, 671
Clustered index, 774
CO, 788
Code cache, 416
Code completion, 703
Code Inspector, 183, 216, 226, 527, 702
Code push-down, 659, 681
Column-based data storage, 616, 659, 665, 667
Column store, 683, 694
Command monitor, 734
Common Programming Interface Communication, 788
Compilation, 416
Compressibility, 680
Compression, 616, 625, 666, 668
cluster coding, 671
prefix coding, 671
run-length coding, 671
sparse coding, 671
Computer, 76, 124
Computer Center Management System (CCMS), 29, 35, 63, 134, 484, 788
Alert Monitor, 135, 330
monitoring, 134
monitoring tree, 138
System Component Recovery (SCR), 174
Concordance, 620
Concurrent mark-sweep collector, 412
Condition table, 535, 550
Connection view, 422
Consolidation strategy, 261
Container, 89
Context switch, 80, 271, 788
Continuous performance optimization, 57
Controls, 347
CO-PA Accelerator, 661
Core, 80, 742
Cost-based optimizer (CBO), 476
Coupling
hard, 321
soft, 321
CPI-C, 788
CPU, 46, 80, 788
bottleneck, 81, 84, 106, 165
load, 79, 82, 106, 166, 250
requirement, 245, 343
resources, 305
sizing, 686
time, 156, 159, 162, 168, 187, 306
trace, 201
wait time, 307
Index

Creating secondary indexes, 487
Cursor, 193
Cursor cache, 270
Cursor ID, 193
Customer interaction center, 212
Customizing, 788
Customizing data, 534
Customizing Organizer, 788

D
Data archiving, 788
Database, 76, 788
-analysis, 728
-buffer, 91, 665, 729
-error log file, 105, 750
-standstill, 108
tasks, 733
Database access, 183
-fully qualified, 191
Database administration, 110
Database administrator cockpit see DBA Cripit, 727
Database analysis, 89
Database Analyzer, 738
Database buffer, 91, 665
Database consolidation, 256, 260
Database global memory, 746
Database heap, 746
Database index
-missing, 107
Database instance, 76, 289, 788
Database level, 40
Database load, 499, 722
Database lock, 104, 382, 383, 385, 450, 750, 789
-IBM DB2 for z/OS, 762
Informix, 743
MaxDB, 737
-monitor, 124, 386
SQL Server, 773
Database monitor, 64, 89, 118, 386, 727
Database object
-missing, 777
Database operation, 192

Database optimizer, 107, 472, 475, 492, 702, 789
-Cost-based (CBO), 107
Database performance monitor, 90, 779
Database performance problem, 167
Database procedure, 156
calls, 156
-subrecord, 156
time, 156
Database process, 82, 698
-monitot, 96, 124, 189, 450, 457, 733, 742, 755, 762, 773
Database processor, 106
Database query parallelization, 666
Database response times
-long, 125
Database server, 40, 76, 789
Database service, 343
Database system, 76, 382, 788
-parallel, 76
Database table, 561
Database time, 154, 162, 167, 168, 185
Database tuning, 30
Database view, 509, 660, 731, 739, 745, 752, 759, 765, 769, 775
Data buffer, 92, 93, 94, 746, 761, 771
Data cache, 92, 732, 771
Data Control Language (DCL), 789
Data Definition Language (DDL), 789
Datafile, 89
Data locality, 675
Data Manipulation Language (DML), 789
Data mining, 562, 664
Data modelin6
-SAP HANA, 679, 684
Data package, 612
Data retention
-centralized, 642
de-centralized, 642
DataStore object, 563, 564, 575
-HANA-optimized, 717, 719
-indexing, 593
Data volume, 737
-transferred, 349
Data warehouse, 563
DB2 for LUW, 747
DBA, 789
DBA Cockpit, 90, 125, 386, 481, 483, 687, 727, 732
DB2 for IBM i, 755
DBA log, 777
DBA Planning Calendar, 483
Deadlock, 388, 789
Debugger, 417
Debugging, 211
Decomposition, 625
vertical, 625
Default data cache, 741
DELETE statement, 213
Delta index, 636, 639, 655, 672, 708, 710
activate, 640
integrate, 641
Demilitarized Zone (DMZ), 40, 264
Deoptimization, 416
Dequeue module, 384
Destination, 322, 326
Developer log, 295
Developer trace, 779
Development Workbench, 35
DIAG protocol, 789
Dialog load, 165
Dialog response time, 319
Dialog service, 262, 302, 304
Dialog user, 230, 312
Dialog work process, 154, 314, 339, 789
Dictionary, 677
Dictionary coding, 668
Difference coding, 671
Dimension ID, 566
Dimension table, 566
index, 591
Direct read, 191, 730, 739, 744, 758, 763
Disk read, 465
Dispatcher, 302, 789
process, 262
queue, 130, 153
wait time, 153, 162, 167, 306
Dispatching, 263
Displacement, 114
Displacement (swap), 531, 535
Display attribute, 569
Display statistics on table accesses (table
call statistics), 779
disp+work, 262
Distributed Statistics Record (DSR), 173, 218
Document, 230
Documentation, 61
Dominator tree, 447
Drilldown, 564
Dual-stack installation, 260
Dump, 291
Dynamic statement cache, 761
Dynamic user distribution, 264, 308
Dynpro, 789

E

Easy Web Transaction (EWT), 370, 789
eCATT, 789
Eclipse, 789
EDN, 789
EDM DSC cache, 761
EDM pool, 761
E fact table, 596
Electronic Data Interchange, 789
Embedded Search, 618
em/initial_size_MB, 126
End-to-end diagnostics, 69
End-to-end runtime analysis, 220, 223, 226
SAP GUI transaction, 222
End-to-end trace, 206, 360, 451
End-to-end workload analysis, 178
End user experience monitoring, 54
End User Experience Monitoring, 365
Enqueue, 382, 789
module, 384
operation, 188
server, 302
service, 262, 302, 303
table, 390
trace, 188, 199
Enterprise File Search (EFS), 617
Enterprise IMG, 789
Enterprise JavaBeans, 40
Index

Entity, 789
Error code
 DBIF_RSQL_NO_MEMORY, 297
 EXPORT_NO_SHARED_MEMORY, 293
 EXSORT_NOT_ENOUGH_MEMORY, 297
 PXA_NO_SHARED_MEMORY, 292
 SET_PARAMETER_MEMORY_OVERFLOW, 292
 STORAGE_PARAMETERS_WRONG_SET, 291, 295, 297
 SYSTEM_NO_MORE_PAGING, 280
 SYSTEM_NO_ROLL, 292
 TSV_TNEW_PAGE_ALLOC_FAILED, 291
 TSV_TNEW_PG_CREATE_FAILED, 280
Escalation procedure, 56
Event, 368
Event data, 664
Exclusive database locks, 104
Exclusive lock wait, 104, 112, 131, 144, 385, 404, 762
SQL Server, 773
Execution plan, 472, 473, 702, 729, 789
 DB2 for IBM i, 757
 IBM DB2 for z/OS, 762
 Microsoft SQL Server, 774
 Oracle, 767
Executive Information System (EIS), 561
Expert monitor, 63
Export/import buffer, 399, 522, 551
Export/import SHM buffer, 293, 522, 551
Extended global (EG) memory, 279
Extended memory, 294, 790
Extended memory area (EM), 293
Extensible Markup Language (XML), 798
Extraction, 566

Fact table (Cont.)
 index, 591
 SAP HANA, 718
Failover recovery, 259
Failover solution, 304
FE Net Time, 350
Fetch, 537
Fetch operation, 192, 505
F fact table, 596
Fiber Distributed Data Interchange (FDDI), 790
File and network I/O analysis, 439
File operation, 439
Files statistics, 439
File system cache, 85
Firewall, 790
Flow, 563
FOR ALL ENTRIES, 505, 507, 509
Fragmentation, 547, 555
FREE statement, 213
Frontend
 time, 350
 trace, 221
Full table scan, 473, 480, 488, 589, 730
Function builder, 318
Function module, 317

G
Garbage collection (GC), 408, 409, 456, 790, 793, 809
 analysis, 441, 457
 collector, 412
 compacting, 411
 full, 410
 JVM, 409
 log, 415
 mark and copy, 411
 mark and sweep, 411
 partial, 410
Gateway monitor, 324
Generation, 409
Generation time, 154
Global cache hit ratio, 762
Globally Unique Identifier, 790
GoingLive Check, 25, 295

F
Fact table, 566, 611
 compress, 595, 655
GoingLive Functional Upgrade Service, 254
Gross-time optimization, 210
GUI, 790
 communication, 350
 controls, 348
 time, 155, 187, 349, 352
GUID, 790

H

Hard disk, 674
 access, 737
 monitor, 773
Hardware, 46
 analysis, 77
Hardware bottleneck, 82, 165
 analysis, 79
Hardware capacity, 166
Hardware consolidation, 256, 258
Hardware landscape, 303
Hardware monitoring, 75
Hardware partner, 231, 234
Hardware sizing, 229, 231, 401
Hardware tuning, 29
Harmonization, 256
Hash table, 214
Heap, 272
 dump, 447
 dump analysis, 457
 memory, 790
Hierarchy, 571, 575
High availability, 303, 304, 790
High-availability cluster, 259
High water mark, 115
Hints, 493
Hit ratio, 92
HotSpot, 102, 430, 676, 773
HotSpot Java Virtual Machine, 411
HPROF file, 447
HTML business template, 372
HTML Control, 348
HTTP call, 376
HTTP trace, 199, 225, 359
HTTPWatch, 364
HybridProvider, 563, 564
Hypertext Markup Language (HTML), 790
Hypertext Transfer Protocol (HTTP), 790

I

IAC, 790
IBM DB2
 for IBM i, 753
 for Linux, UNIX, and Windows, 746
 for z/OS, 760
IBM DB2 for Linux, UNIX, and Windows
 execution plan, 751
IBM i, 282, 754
IBM Informix Dynamic Server
 execution plans, 744
IDES, 790
Index, 603, 659, 681, 707
 administration, 480
 B* index, 677
 bitmap index, 590, 593
 B* tree index, 593
 BWA index, 652
 concatenated, 679, 707
 create, 480
 divide, 637
 efficient, 193
 fragmentation, 485
 inverted, 677, 707
 logical, 623, 637
 main memory, 616
 maintain, 480
 missing, 107
 physical, 623, 637
 primary index, 108
 quality, 486
 reorganize, 485
 TREX index, 616
Indexing, 588, 645
Index range scan, 473, 480
Index scan, 590
Index server, 621, 642, 683
Index unique scan, 473
Index update, 645
Index

InfoCube, 563, 566, 575, 605
 HANA migration, 777
 HANA-optimized, 717
 indexing in the BWA, 650
 overview, 777
 transactional, 591
InfoObject, 563
InfoProvider, 563, 575, 597
InfoSet, 563
Initial sizing, 232, 236
In-memory application, 662
In-memory computing, 616, 666
In-memory database, 674
Insert-only approach, 680
Installation
 central, 303
 distributed, 303
Integer ID, 668
Integrity, 48
Interaction model, 348
Interfaces, 301
Internal Document (IDoc), 791
 IDoc type, 790
Internal table, 210
International Demo and Education System, 790
Internet Application Component, 790
Internet Communication Framework (ICF), 367, 370
Internet Communication Manager (ICM), 133, 262, 357, 359, 367, 621
 monitor, 65, 133, 360, 373, 779
Internet connection, 347
Internet of Things, 663
Internet Pricing and Configuration (IPC), 261, 271, 341, 791
Interpreter, 415, 416
Inter Process Communication (IPC), 791
Intranet, 791
Introscope statistics, 174
Introscope Trace, 456
Invalidation, 114, 530, 531
I/O bottleneck, 86, 103, 194
I/O operation, 457
iSeries, 282
iView, 38

J
Java, 792
Java application instance, 76, 265
Java bytecode, 416
Java Development Kit (JDK), 408
Java Dictionary, 521, 556
Java heap, 409, 414, 457
 analysis, 447
Java runtime, 421
JavaScript, 683
Java Server Page (JSP), 40, 347, 357
Java Servlet, 40, 347
Java statistics, 173
Java trace, 65
Java Virtual Machine (JVM), 341, 407, 457, 792, 797
 memory area, 409
 work processes, 418
Java workload monitor, 178
Job analysis, 778
Job overview, 611
Join, 575, 590
Join engine, 684
Just-in-Time (JIT) compiler, 407, 408, 416, 431

K
Key figure, 146, 563
Key performance indicator (KPI), 135
Knowledge management (KM), 617

L
Landscape reorganization, 636, 638
Landscape replication, 684
Large IO pool, 741
Latency time, 359, 440, 674
Leaf, 590
Linearity, 238
Line item dimension, 575, 719
Linux, 281
liveCache, 261
Load, 160, 170
 inbound, 330
 outbound, 330
Load distribution, 147, 166, 301
 ABAP, 302
 incorrect, 82, 127
 new, 338
Load from external systems, 176
Loading, 566
Load profile, 147, 454
Load time, 154
Local Area Network (LAN), 45, 792
 LAN check 87
Local memory, 270
Lock, 381, 382, 437, 457
 database lock, 382
 lock conflict, 385
 locking with quantities, 400, 401
 lock object, 383
 monitoring, 385
 SAP enqueue, 382, 398
 shared enqueues, 400
 table lock, 389
 wait situation, 381
Lock escalation, 737
Lock handler, 382
Locking with quantities, 304
Lock list, 746
Log area, 108, 737
Logical analysis, 61
Logical changes, 164
Logical unit of work (LUW), 336, 792
Logistic Information System (LIS), 317, 561
Logon group, 264, 308, 329
 maintenance, 779
 monitor, 303
Loop
 nested, 214
Low-speed connection, 355
LRU, 792

Main memory (Cont.)
 bottleneck, 81, 85, 165
 buffering, 392
 configuration monitor, 249
 requirement, 183, 287
 sizing, 685
 workload, 80
Maintenance view DBDIFFVIEW, 482
Master data, 534
 Master data table indexing, 593
Master index server, 636, 642
Master service, 715
Memory
 allocation, 117, 275, 691
 area, 283, 298
 available, 286
 configuration, 112, 269
 configuration monitor, 290, 295, 403, 543, 553, 555, 598, 779
 extract, 212
 fixed allocated (heap), 293
 Inspector, 210, 212
 leak, 446, 449, 457
 local, 270, 792
 management, 792
 physical, 118, 690
 pipe, 133, 370
 profile, 168
 shared, 270
 used, 691
 virtual, 270, 691, 797
 virtual required, 286
Memory Analyzer, 446, 457
Memory management, 116, 168
 IBM i, 282
 integrated, 409
 Linux, 281
Merge, 640, 672, 710
 auto merge, 711
 critical merge, 712
 hard merge, 711
 smart merge, 712
Message server, 229, 263, 344
Message service, 262, 303
Metadata, 91
Method, 416, 457
 memory requirement, 426
Method Parameter Trace, 457

M

Machine code, 416
Main memory, 46, 269, 659, 665, 674, 707
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft SQL Server, 470</td>
</tr>
<tr>
<td>Microsoft Windows, 280, 307</td>
</tr>
<tr>
<td>Migration, 255</td>
</tr>
<tr>
<td>Missing index, 481</td>
</tr>
<tr>
<td>Mobile client, 38</td>
</tr>
<tr>
<td>Mode, 272, 793</td>
</tr>
<tr>
<td>Priv mode, 290</td>
</tr>
<tr>
<td>Mode list (mode list), 290</td>
</tr>
<tr>
<td>Model View Controller (MVC), 367</td>
</tr>
<tr>
<td>Modularization unit, 201, 210</td>
</tr>
<tr>
<td>Monitoring, 47, 55</td>
</tr>
<tr>
<td>Central, 50</td>
</tr>
<tr>
<td>Monitoring agent, 140, 218</td>
</tr>
<tr>
<td>Monitoring plan, 47, 50</td>
</tr>
<tr>
<td>Monitoring system</td>
</tr>
<tr>
<td>Central, 174</td>
</tr>
<tr>
<td>Monitoring tree, 138</td>
</tr>
<tr>
<td>Moore's law, 793</td>
</tr>
<tr>
<td>Multicore processor, 80</td>
</tr>
<tr>
<td>Multilingualism, 575</td>
</tr>
<tr>
<td>MultiProvider, 563, 565, 575</td>
</tr>
<tr>
<td>Multithreaded CPU, 80</td>
</tr>
</tbody>
</table>

Number range (Cont.)
- Buffer mode, 397
- Interval, 391
- Number range level, 396
- Object, 391

O
- Object Linking and Embedding (OLE), 793
- OLAP, 246, 261, 562, 793
- OLAP cache, 553, 576
 - Configuration, 598, 777
 - Monitor, 599, 777
 - Monitoring, 596
- OLAP engine, 683
- OLAP processor, 576
- Old generation, 409, 413
 - Collectors, 412
- Online Transaction Processing (OLTP), 246, 261, 562, 793
- Open object, 772
- Open operation, 192
- Open SQL monitor, 451
- Operating mode, 778, 793
- Operating system, 269, 298, 793
 - Command, 779
 - Configuration parameter, 291
 - File, 777
 - Limit, 295
 - Monitor, 64, 77, 86, 124, 189, 249, 353, 753, 779
 - Paging, 271
 - Parameter, 87
 - Process, 82
 - Restrictions, 284
 - Swap space, 291
- Operation mode, 312
- Optimization
 - Technical, 20
- Optimization plan, 47, 50
- Oracle, 93, 767
- Oracle wait event, 98
- Outsourcing, 24

N
- Name server, 621, 683
- Nametab buffer, 522
- Navigation attribute, 569, 575
- Nested loop join, 510, 590, 745
- Net time, 350
- Network, 87, 194, 306
 - Alert monitor, 779
 - Connection, 439
 - Graphics, 777
 - I/O and file I/O trace, 457
 - Monitor, 779
 - Operation, 439
 - Problems, 194
 - Transfer time, 365
 - Tuning, 29
- Non-dialog work processes, 277
- Nonoptimal load distribution, 167
- NRIV, 397
- Number range, 391
 - Buffering, 391, 393, 396
P

Package cache, 746
Package dimension, 572
Page in, 796
Page out, 796
Pages, 92
Paging, 793
Paging file, 283, 298
Paging rate, 81, 85, 753
Parallelization, 666, 675, 715
Parameter change, 87
Parameter maintenance, 360
Parameters
 characterizing, 146
Parsing, 472
Partitioning, 315, 625, 675, 716
 area-based, 676
 horizontal, 675
 round robin, 676
 vertical, 675
PASE runtime environment, 282
Passport, 173, 218, 796
Pending period, 529, 538
PERFMON program, 364
Performance, 48, 793
 measurement, 348
Performance forum, 72
Performance HotSpot analysis, 430
Performance HotSpot Trace, 457
Performance indicator, 134
Performance management
 proactive, 21
Performance problem
 general, 161
 specific, 161, 169
Performance trace, 188, 352, 585, 635
Performing sizing project, 238
Permanent generation, 409, 414
Permanent performance problem, 163
Physical main memory (RAM), 269, 283, 298
Physical read access, 92
Pivoting, 564
Planning application, 562
Plug-in, 37
Pool size, 649
Pop-up window, 793
Prefix coding, 671
Prepare, 193
Prepared statement, 761
Preparsed templates, 372
Preprocessing
 distribution, 637, 648
Preprocessor, 621, 637, 683
 capacity, 649
 configure, 648
 modes, 648
Presentation level, 38
Presentation server, 41
 analyses, 360
Presentation server trace, 362
Primary index, 471, 482, 730
Priority class, 339
Private mode, 126, 277
Probe, 453
Procedure cache, 771
Process
 complete, 127
 external, 84
 stopped, 126
Process after input (PAI), 793
Process before output (PBO), 793
Process chain, 566
Process ID, 124
Processing time, 156, 159, 162
Processor, 80, 255, 788
Processor thread, 345
Profile parameter, 291
 abap/atrapath, 203
 abap/atrasizequota, 203
 abap/heap_area_dia, 275, 278, 294, 296
 abap/heap_area_nondia, 275, 278, 294, 297
 abap/heap_area_total, 275, 278, 294, 297
 abap/heaplimit, 275
dbs/io_buf_size, 193
em/address_space_MB, 281
em/blocksize_KB, 274
em/initial_size_MB, 116, 274, 289, 295
e/maximum_size_MB, 281
maintain, 778
PHYS_MEMSIZE, 117, 281, 289
Index

Profile parameter (Cont.)
 rdisp/atp_server, 303
 rdisp/bufrefmode, 530
 rdisp/bufreftime, 530
 rdisp/enqname, 303
 rdisp/max_wprun_time, 309
 rdisp/mhost, 303
 rdisp/PG_MAXFS, 280
 rdisp/PG_SHM, 280
 rdisp/ROLL_MAXFS, 274, 295
 rdisp/ROLL_SHM, 116, 274
 rdisp/vb_dispatching, 316
 rdisp/vbstart, 314
 rsdb/max_blocking_faktor, 508
 rsdp/obj/buffersize, 401
 rsdp/obj/max_objects, 401
 rstr/file, 189
 rstr/max_diskspace, 190
 setting, 295
 stat/dbprocrec, 156
 ztta/roll_area, 274, 278
 ztta/roll_extension, 274, 278, 290, 294
 ztta/roll_first, 275, 276, 278

Program
 RSCOLL00, 152
 SAP_COLLECTOR_FOR_PERFORMANCE, 152
 saposcol, 79
 Program buffer, 292, 522
 Program counter, 80
 Program error, 291
 Program Global Area (PGA), 93
 Program termination, 291
 Promotion, 409
 PTF package, 757
 Python trace, 634

Queue server, 622, 623
 configure, 637, 645
 Quick Sizer, 232, 239, 298

R

R/3, 794
 Radio-frequency identification (RFID), 663
 RAID, 794
 Ranking, 620
 RBO, 475
 rdisp/atp_server, 401
 Read sequential vs. record-by-record, 479
 Read access, 398
 logical, 92
 Read random hit ratio, 761
 READ TABLE, 214
 READ TABLE ... WITH KEY ..., 214
 Read/write (I/O) problems, 86, 102, 750
 Record-by-record read, 479
 Recovery, 48, 53, 259
 Recursive call, 95
 Redo log file, 164
 REFRESH statement, 213
 Region
 generic, 524
 Relational database, 40
 Relational database management system (RDBMS), 794
 RemoteCube, 597
 Remote function call (RFC), 37, 188, 231, 339, 794
 ABAP coding, 322
 asynchronous, 322, 778
 asynchronous (aRFC), 310, 335
 background, 322
 background RFC (bgRFC), 338
 call, 188
 client profile, 333
 connection, 778
 cycle, 323
 destinations monitoring, 330
 fundamentals, 320

Q

Quadratic dependency, 216
 Quality analysis, 216
 Quantity structure, 234
 Query
 analytic, 673
 parallelization, 625
Remote function call (RFC) (Cont.)
 queued (qRFC), 322
 statistics, 333
 synchronous, 322
 time, 326
 trace, 187, 188, 198
 transactional, 797
 transactional (tRFC), 322, 336
 Rendering time, 365
 Reopen operation, 192
 Reorganization, 716
 Replication, 642, 684
 triggering, 643
 Report, 561, 562
 precalculation, 601
 Report RSSNR0A1, 394
 Request, 537, 545
 Required field, 512
 Reset or check the number range buffer, 778
 Resource management, 259
 Resource monitor, 736
 Resource requirements, 231, 238, 802
 Response time, 54, 55, 145, 156, 183, 305, 729
 Response time distribution, 176
 RFID, 794
 Roll buffer, 288
 Roll-in, 154, 273, 788
 Roll memory, 294
 Roll-out, 154, 273, 788
 Rollup, 564
 Roll wait time, 155, 187, 326, 349
 Root recognition, 620
 Roundtrip, 349, 440
 Row-based data storage, 665
 Row cache, 95
 Row-ID, 471
 Row store, 683, 697
 Rule-based optimizer (RBO), 478
 Run-length coding, 671
 Runtime, 430
 analysis, 146, 188, 201, 453
 constant, 216
 logarithmically increasing, 216

S

SAP Advanced Planning & Optimization
 (SAP APO), 35
SAP application instance, 76
SAP Application Performance Standard
 (SAPS), 243, 794
SAP Basis, 35
SAP BIx web analyzer, 359
SAP buffering, 113, 155, 288, 298, 499,
 521, 524
 access, 188
 activate, 531
 full, 524
 generic, 524
 SAP buffer trace, 189
SAP Business ByDesign, 662
SAP Business Connector (SAP BC), 787
SAP BusinessObjects with SAP HANA,
 565, 661, 788
SAP BusinessObjects Business
 Intelligence platform, 565
SAP BusinessObjects Dashboards, 566
SAP BusinessObjects Explorer, 566, 653
SAP BusinessObjects Voyager, 566
SAP BusinessObjects Web Intelligence, 566
SAP Business Suite, 34
 introduction, 256
 SAP HANA, 661
SAPCCMSR, 218
SAP client plug-in, 221, 226, 362, 364
SAP component, 34
SAPconnect, 141
SAP Crystal Reports, 566
SAP cursor cache, 194
SAP Customer Relationship
 Management (SAP CRM), 35, 791
SAP EarlyWatch Alert, 57, 68, 70, 247,
 295
SAP Easy Access menu, 355
SAP enqueue, 382, 383, 389, 390, 398
 monitor, 403
SAP Enterprise Resource Planning (ERP), 35
SAP extended memory, 115, 272, 274,
 276, 279, 288, 289, 298, 372
SAP GoingLive Check, 231, 235, 247
SAP GoingLive Functional Upgrade Check, 248
SAP GoingLive Migration Check, 248
SAP GUI, 347, 358, 794
customs, 347, 348
detail-to-end runtime analysis, 222
for HTML, 37, 358
for Java environment, 37, 38, 358
for Windows, 37, 38, 358
transaction, 222
SAP HANA, 500, 659, 794
administration, 719
cloud application, 662
compression, 668
database platform, 661
indexing, 676
main memory area, 690
scalability, 500
scaling, 46
sizing, 685
SAP HANA Studio, 687
SAP heap memory, 115, 272, 274, 294, 298, 342
SAP host agent, 755
SAP Implementation Guide (IMG), 598, 779, 791
SAP instance, 76, 149, 257, 288, 791
maintenance, 777
overview, 778
SAP Internet Transaction Server (ITS), 39, 261, 271, 310, 356, 370, 791
external, 371
integrated, 279, 370, 779
monitor, 65
performance analysis, 373
status monitor, 372
SAP J2EE Engine, 35
SAP Java Virtual Machine (JVM), 408
SAP Java Virtual Machine Profiler, 419, 447, 457
SAP kernel, 295
SAP liveCache, 36, 147, 262, 728, 792
SAP logical unit of work (SAP LUW), 383
SAP Management Console, 417, 456
SAP MaxDB, 470, 732
command monitor, 735
execution plan, 738
resource monitor, 736
SAP memory area, 287
SAP memory configuration, 112, 126
monitor, 64, 112
SAP memory management, 168
SAP NetWeaver 7.40, 35, 528
SAP NetWeaver 7.30, 31
SAP NetWeaver Administrator, 64, 66
SQL trace, 450
SAP NetWeaver Application Server, 38, 356, 265
SAP NetWeaver Application Server (AS) ABAP, 76, 265
SAP NetWeaver Application Server (AS) Java, 35, 76, 265, 407
server node, 421
SQL trace, 450
SAP NetWeaver BW, 36, 359, 553, 561, 794
administration tools, 578
data selection, 594
frontend, 565
indexing, 588
monitor, 777
optimization, 586
performance optimization, 574
SAP HANA, 661
statistics, 581, 654
SAP NetWeaver BW Accelerator (BWA), 575, 578, 660, 795, 619, 624
creating indexes, 652
delta index, 655
indexing InfoCubes, 650
monitor, 777
sizing, 626
Workbench, 578
SAP NetWeaver Cloud, 662
SAP NetWeaver Enterprise Search, 36, 618, 794
SAP NetWeaver Portal, 36, 38
SAP NetWeaver Process Integration, 36, 787
Saposcol, 79
SAP paging, 271
 memory, 279, 298, 555, 793
SAP parameter
 change, 119
SAP performance menu, 779
SAP performance trace, 183
SAP Product Lifecycle Management (SAP PLM), 35
SAP R/3, 22
SAP repository browser, 778
SAP roll area
 local, 273
 roll buffer, 273
 roll file, 273
 roll memory, 115, 272, 273, 298
 shared, 273
SAProuter, 794
SAP Service, 229, 303
SAP Service Marketplace, 298
 Service, 70
SAP Solution Landscape, 35
 analysis, 69
 monitoring, 66
 performance optimization, 69
 service-level management, 57
 tracing, 69
 workload analysis, 69
SAP Standard Application Benchmark, 229, 242
SAP Supplier Relationship Management (SAP SRM), 35
SAP Supply Chain Management (SAP SCM), 35
SAP Sybase, 796
SAP Sybase ASE, 740
 database process, 742
 data buffer, 741
 engine, 742
SAP system, 35, 76
SAP System Identifier (SID), 570, 795
 table, 570
SAP system service, 794
SAP system trace, 779
SAP transaction, 383
SAP Web Dispatcher, 40, 229, 262, 264, 310
SAP work process, 41, 82, 104, 121, 289, 298, 733
 overview, 121
Savpoint, 92
Scalability, 238, 716, 795
 horizontal, 46, 795
 program, 215
 vertical, 46, 795
SD benchmark, 242
Search Engine Service (SES), 617
Secondary index, 469, 472, 480, 482
Select
 identical, 195
SELECT * clause, 505
Selection screen, 511
Selectivity, 476, 478, 488
SELECT, nested, 504
Semaphore, 125
Sensor data, 664
Sequential read, 192, 479, 730, 738, 745, 751, 757, 758, 762, 764, 768, 774
Serialization, 125
Server, 77, 795
Server consolidation, 256, 259
Server destination statistics records, 333
Server profile, 167
Service, 302
 maintenance, 202
Service-level agreement, 51
Service-level management (SLM), 51, 68, 71, 795
Service-level reporting, 51, 53, 56, 71
Service maintenance, 372, 376
Session, 341
 external, 272
 internal, 272
Session monitor, 96
Shadow process, 96, 98
Shared cursor cache, 95, 99
Shared memory, 270, 292, 341, 370, 398, 553, 746, 795
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared objects</td>
<td>551</td>
</tr>
<tr>
<td>area configuration</td>
<td>554</td>
</tr>
<tr>
<td>area monitor</td>
<td>554</td>
</tr>
<tr>
<td>buffering</td>
<td>522, 553</td>
</tr>
<tr>
<td>Shared pool</td>
<td>93, 95</td>
</tr>
<tr>
<td>Shared SQL area</td>
<td>99, 516</td>
</tr>
<tr>
<td>Shared SQL cache</td>
<td>99</td>
</tr>
<tr>
<td>Simulation application</td>
<td>562</td>
</tr>
<tr>
<td>Single-core processor</td>
<td>80</td>
</tr>
<tr>
<td>Single-level storage</td>
<td>282</td>
</tr>
<tr>
<td>Single point of failure (SPOF)</td>
<td>304</td>
</tr>
<tr>
<td>Single-record buffer</td>
<td>521, 523</td>
</tr>
<tr>
<td>central</td>
<td>175, 218</td>
</tr>
<tr>
<td>Single-transaction analysis</td>
<td>207</td>
</tr>
<tr>
<td>Sizing</td>
<td>229, 685</td>
</tr>
<tr>
<td>initial</td>
<td>232, 236</td>
</tr>
<tr>
<td>throughput-based</td>
<td>233, 234</td>
</tr>
<tr>
<td>T-shirt sizing</td>
<td>232</td>
</tr>
<tr>
<td>user-based</td>
<td>233</td>
</tr>
<tr>
<td>Sizing Plausibility Check</td>
<td>235</td>
</tr>
<tr>
<td>Sizing process</td>
<td>231</td>
</tr>
<tr>
<td>Skeleton</td>
<td>761</td>
</tr>
<tr>
<td>Slave index server</td>
<td>636, 642</td>
</tr>
<tr>
<td>Slave service</td>
<td>716</td>
</tr>
<tr>
<td>Slice & dice</td>
<td>564</td>
</tr>
<tr>
<td>Snapshot</td>
<td>642</td>
</tr>
<tr>
<td>Social network</td>
<td>663</td>
</tr>
<tr>
<td>Socket</td>
<td>439</td>
</tr>
<tr>
<td>Socket statistics</td>
<td>439</td>
</tr>
<tr>
<td>Solution monitoring</td>
<td>47, 67</td>
</tr>
<tr>
<td>Sorted table</td>
<td>214</td>
</tr>
<tr>
<td>Sparse coding</td>
<td>671</td>
</tr>
<tr>
<td>Spool service</td>
<td>262, 302, 304</td>
</tr>
<tr>
<td>SQL (Structured Query Language)</td>
<td>795</td>
</tr>
<tr>
<td>native SQL</td>
<td>494</td>
</tr>
<tr>
<td>Open SQL</td>
<td>494, 556</td>
</tr>
<tr>
<td>SQL code</td>
<td>504</td>
</tr>
<tr>
<td>SQL editor</td>
<td>703</td>
</tr>
<tr>
<td>SQL monitor</td>
<td>HANA migration, 702</td>
</tr>
<tr>
<td>SQL Plan Cache</td>
<td>701</td>
</tr>
<tr>
<td>SQL programming</td>
<td>496</td>
</tr>
<tr>
<td>efficient</td>
<td>496</td>
</tr>
<tr>
<td>golden rules</td>
<td>496, 668, 680, 721</td>
</tr>
<tr>
<td>SQL Query Engine</td>
<td>755</td>
</tr>
<tr>
<td>SQLScript</td>
<td>684</td>
</tr>
<tr>
<td>SQL Server</td>
<td>771</td>
</tr>
<tr>
<td>primary index</td>
<td>774</td>
</tr>
<tr>
<td>SQL statement</td>
<td>70, 95, 96, 98, 99, 188, 461, 469, 488, 489, 495, 702, 730, 734</td>
</tr>
<tr>
<td>buffer</td>
<td>741</td>
</tr>
<tr>
<td>dynamic</td>
<td>761</td>
</tr>
<tr>
<td>expensive</td>
<td>95, 101, 462, 749, 779</td>
</tr>
<tr>
<td>nested</td>
<td>505</td>
</tr>
<tr>
<td>optimization</td>
<td>461</td>
</tr>
<tr>
<td>SQL statistics</td>
<td>99, 100, 450, 463, 464, 468, 495, 550, 701, 779</td>
</tr>
<tr>
<td>Analysis</td>
<td>102</td>
</tr>
<tr>
<td>DB2, 748, 749</td>
<td></td>
</tr>
<tr>
<td>DB2 for IBM i</td>
<td>755</td>
</tr>
<tr>
<td>IBM DB2 for z/OS</td>
<td>762</td>
</tr>
<tr>
<td>Informix</td>
<td>743</td>
</tr>
<tr>
<td>SAP MaxDB</td>
<td>734</td>
</tr>
<tr>
<td>SQL Server</td>
<td>773</td>
</tr>
<tr>
<td>SQL trace</td>
<td>65, 102, 185, 188, 189, 190, 225, 457, 463, 464, 467, 496, 501, 550, 779</td>
</tr>
<tr>
<td>Stack pointer</td>
<td>80</td>
</tr>
<tr>
<td>ST-A/PI</td>
<td>207</td>
</tr>
<tr>
<td>Star join execution plan</td>
<td>588</td>
</tr>
<tr>
<td>Star schema</td>
<td>563, 670</td>
</tr>
<tr>
<td>extended</td>
<td>566</td>
</tr>
<tr>
<td>Statement cache</td>
<td>771, 773</td>
</tr>
<tr>
<td>Statement string</td>
<td>761</td>
</tr>
<tr>
<td>Statistics</td>
<td>derived, 428</td>
</tr>
<tr>
<td>Statistics record</td>
<td>173, 184, 795</td>
</tr>
<tr>
<td>distributed</td>
<td>173, 218</td>
</tr>
<tr>
<td>Statistics server</td>
<td>717</td>
</tr>
<tr>
<td>Statistics single record</td>
<td>536</td>
</tr>
<tr>
<td>Stemming</td>
<td>620</td>
</tr>
<tr>
<td>Stock</td>
<td>563</td>
</tr>
<tr>
<td>Stop-the-world</td>
<td>411</td>
</tr>
<tr>
<td>Stored procedure</td>
<td>660, 772, 796</td>
</tr>
<tr>
<td>SUBMIT</td>
<td>272</td>
</tr>
<tr>
<td>Subrecord</td>
<td>147, 156</td>
</tr>
<tr>
<td>Suite Accelerator</td>
<td>661</td>
</tr>
<tr>
<td>Support package</td>
<td>796</td>
</tr>
<tr>
<td>Survivor</td>
<td>411</td>
</tr>
<tr>
<td>Swap</td>
<td>114</td>
</tr>
</tbody>
</table>
Swap space, 80, 116, 270, 282, 283, 285, 298, 796
Synchronization analysis, 436
Synchronization trace, 457
System availability, 304
System buffers, 521, 522
System consolidation, 256, 260
System Global Area (SGA), 93
System landscape, 256, 796
System log, 778
System message
 sending, 778
System monitoring, 49

T

Table
 analysis, 546, 777
ARFCSDATA, 336
ARFCSTATE, 336
buffered, 540, 544
buffered objects, 557
condition table, 535
created by SAP, 542, 546
customer-developed, 542, 546
D010*, 516
D010S, 516
D020*, 516
DBDIFF, 482
DBSTATC, 483
DDLOG, 528, 549, 554
DDNTF, 516, 545
DDNTT, 516, 545
hash table, 214
internal, 210, 803
KAPOL, 516, 539
NRIV, 385, 391
NRIV_LOKAL, 394
reorganize, 485
RESB, 62, 398, 485
sorted, 214
SWNCMONI, 152
TCURR, 547
update table, 315, 319
VBBE, 398
VBDATA, 315

Table (Cont.)
 VBHDR, 315, 545
 VBMOD, 315
Table access statistics, 107, 477, 483, 536, 540, 545, 777
Table buffer, 44, 186, 521, 557
 ABAP server, 535
generic, 515
generic (TABL), 521
 Java, 556
partial (TABLP), 521
Table call statistic, 536
Table maintenance, 483, 710
Table operation, 201
Table pool
 ATAB, 550
 KAPOL, 550
Table size, 545
Tablespace, 89
Task type, 150
Technical analysis, 61
Technical tuning, 61
Temporary performance problem, 163
Temporary sequential objects, 796
TemSe, 796
Teraspace, 282
Text dictionary, 671
Text search, 617
Think time, 305
Thread, 79, 80, 457, 698, 732, 742
dump, 418
 hardware, 80
 monitor, 701
 software, 80
Throughput, 159, 381
Time-based sampling, 430
Time dependency, 570, 575
Time dimension, 572
Time-flow hierarchy, 208
Time profile, 176
Trace frontend, 221
Trace level, 222
Trainings, 800
Transaction, 383, 796
 AL11, 777
 AL12, 777
Index

Transaction (Cont.)

BALE, 777
critical, 54
DB01, 91, 104, 386, 404
DB02, 91, 477, 777
DB05, 546, 777
DB12, 91, 777
DB13, 91, 777
DB13C, 91
DB20, 777
DB21, 483
DB24, 91
DB50, 732
DBACOCKPIT, 64, 124, 386, 481, 483, 687, 728, 732, 777, 778
DSWP, 178, 223, 454
DWDM, 348
LISTCUBE, 579, 777
Locking, 778
ME57, 511
OS06, 77
OS06N, 77
OS07, 77
OS07N, 77
OSS1, 777
response time, 183
RSA1, 578, 581, 591, 608, 652, 777
RSCUSTV14, 777
RSDDBWAMON, 627, 655, 777
RSDDV, 578, 627, 653, 777
RSMIGRNDB, 721, 777
RSODSO_SETTINGS, 777
RSRCACHE, 599
RSRT, 579, 580, 585, 597, 627, 653, 777
RSRV, 655, 777
RZ01, 777
RZ02, 777
RZ03, 777
RZ04, 777
RZ10, 777
RZ11, 360, 778
RZ12, 778
RZ20, 65, 135, 330, 343, 778
SAT, 201
SBGRFCCONF, 338
SBGRFCMON, 338

Transaction (Cont.)

SCII, 216
SE11, 330, 480, 482, 503, 778
SE12, 200, 778
SE14, 481, 778
SE15, 778
SE16, 582, 778
SE24, 216, 778
SE30, 65, 215
SE37, 216, 318
SE38, 216, 296, 386, 512, 778
SE80, 369, 515, 778
SEU, 778
SHMA, 554
SHMM, 554
SICF, 202, 372, 376
SITSMON, 779
SITSPMON, 65, 372
SM01, 778
SM02, 778
SM04, 324, 778
SM12, 391, 403, 778
SM13, 109, 126, 315, 778
SM21, 109, 126, 275, 778
SM24, 553
SM30, 483
SM36, 778
SM37, 611, 778
SM39, 778
SM49, 778
SM50, 64, 121, 211, 295, 303, 318, 324, 373, 386, 733, 778
SM51, 77, 121, 130, 778
SM56, 396, 778
SM58, 336, 778
SM59, 326, 327, 337, 778
SM63, 778
SM65, 778
SM66, 122, 128, 303, 318, 324, 373, 386, 733, 778
SM69, 779
SMGW, 324
SMICM, 65, 133, 360, 373, 779
SMLG, 127, 303, 309, 779
SNRO, 396
SPRO, 401, 779
SQLM, 702, 779
Transaction (Cont.)
 ST01, 779
 ST02, 64, 112, 249, 286, 290, 293, 295, 403, 543, 553, 779
 ST03, 64, 147, 149, 175, 303, 325, 330, 342, 373, 579, 582, 779
 ST03G, 64, 173, 175
 ST03N, 149, 251
 ST04, 91, 118, 779
 ST05, 188, 352, 463, 779
 ST06, 64, 77, 82, 86, 103, 119, 124, 249, 286, 353, 753, 779
 ST06N, 77
 ST07, 779
 ST08, 779
 ST09, 779
 ST10, 779
 ST11, 779
 ST12, 207, 208
 ST14, 779
 ST22, 291, 779
 STAD, 147, 175, 184, 325, 333, 342, 350, 375, 779
 STAT, 536
 STATTRACE, 173, 175, 219
 STMS, 779
 STUN, 63, 779
 SWLT, 779
 SXMB_MONI, 779
 TREXADMIN, 125, 626, 630, 639, 643, 779
 TU02, 779
 VA01, 169
 variant, 514
Transaction code, 797
Transaction data, 533
Transaction profile, 169
Transaction step, 151, 153, 272
Transformation, 566
Transmission Control Protocol/Internet Protocol (TCP-IP), 796
Transparency, 672
Transport, 797
Transport domain, 797
Transport Domain Controller (TDC), 796
Transport management system (TMS), 779, 796
Transport Organizer (TO), 796
Tree, 590
Tree Control, 348
TREX, 36, 44, 262, 615, 660, 794, 797
 administration, 779
 applications, 617
 architecture, 620
 BWA, 624
 compression, 668
distributed installation, 637
fundamentals, 616
monitoring server utilization, 628
optimization, 636
performance analysis, 628
process of a query, 622
Python trace, 634
reorganization, 638
replication, 642
RFC server, 650
search functions, 619
server overview, 630, 631
sizing, 624
tools, 626, 681
workload overview file, 633, 634
TREX index, 617
tRFC table, 337
Troubleshooting, 55
T-shirt sizing, 232
Tuning, 519
 application tuning, 58, 72
 program optimization, 59
technical, 57
Tuple reconstruction, 668

U
Unicode, 253, 271, 288
Unicode conversion, 253
Uniform Resource Locator (URL), 797
Unit dimension, 572
UNIX, 85, 307
 standard implementation, 282
Update, 109, 313, 344
 asynchronous, 314
deactivated, 126
dispatching, 316
Index

Update (Cont.)
 local, 318
 priority decisions, 317
 record, 778
 request, 314
 synchronous, 318
 service, 262, 302
 table, 314
 time, 319
 type, 316
 V1 update, 316
 V2 update, 316
 V3 update, 316
 work process, 314, 315
Upgrade, 253
User
 active, 160
 occasional, 161
 power user, 161
 transactional, 161
User call, 95
User connection, 37
User context, 154, 272, 339, 797
User exits, 237
User interface
 graphical, 790
User kernel thread (UKT), 733
User list, 778
User mode
 expert, 149
 service engineer, 149
User monitor, 324
User profile, 161, 176

W
Web application, 358, 365
Web browser, 787
Web Dynpro, 797
Web Dynpro ABAP, 39, 347, 357, 367, 373
 runtime analysis, 202
Web Dynpro Java, 347, 357
Web GUI, 358
Web reporting, 565
Web service, 37, 231
 ABAP, 372
 monitoring calls, 376
Web services, 357
Web template
 precalculation, 602
Web transaction, 220
WHERE clause, 498
Wide Area Network (WAN), 45, 797
Wily Introscope, 803
Windows, 85
Workbench Organizer (WBO), 797
Work group, 308
Workload analysis, 25, 58, 145, 146, 152, 161, 453, 457
 global, 175
Workload monitor, 64, 147, 149, 152, 168, 219, 251, 303, 325, 342, 373, 580, 779
 BW system workload, 583
 central, 174, 175
 Java, 178
Workload overview, 176
Work process, 41, 125, 127, 262, 273, 305, 343, 797
 ABAP trace, 201
 increasing the number, 345
 Java Virtual Machine, 418
Work process monitor, 318, 373
Work process overview, 64, 97, 121, 189, 211, 295, 303, 323, 386, 733, 778
 system-wide, 128
 systemwide, 779

V
Value per unit, 563
Variant, 205
Verification, 61
Virtualization, 258
Virtual Machine Container (VMC), 261, 262, 301, 341, 797
Virtual memory, 270, 298
Virtual provider, 563
Work process type, 151
World Wide Web (WWW), 798
WRKSYSSTS, 753

Y
Young generation, 409, 413

X
XS server, 683

Z
Zero Administration Memory Management, 116, 280, 284, 299