Table of Contents

User Keynotes

PDM/ EDM as Integration Layer for Continous Workflows Based on Relevant Product Data... 1
K.H. Mühleck

DMU@Airbus – Evolution of the Digital Mock-up (DMU) at Airbus to the Centre of Aircraft Development ... 3
R. Garbade, W. R. Dolezal

Knowledge-based Design – An Integrated Approach............................... 13
A. Katzenbach, W. Bergholz, A. Rolinger

Vendor Keynotes

Cross Disciplinary Methods for Accelerated Product Delivery............... 23
C. Grindstaff

Advances in PLM Methodologies Driving Needs for New Competencies .. 29
X. Fouger

A Systematic Approach to Product Development Best Practises 39
J. Heppelmann
Design Theory

SPALTEN Matrix – Product Development Process on the Basis of Systems Engineering and Systematic Problem Solving 43
A. Albers, M. Meboldt

How to Measure the Success Potential and the Degree of Innovation of Technical Ideas and Products ... 53
H. Binz, M. Reichle

Towards a Generic Model of Smart Synthesis Tools 65
W. O. Schotborgh, H. Tragter, F. G. M. Kokkelker, F. J. A. M. van Houten, T. Tomiyama

Improving Product Development by Design-for-X (DfX) Support........... 75
A. Bufardi, A. Edler, M. Frey, D. Kiritisi, A. Metin, B. Smith

Looking at “DFX” and “Product Maturity” from the Perspective of a New Approach to Modelling Product and Product Development Processes ... 85
Chr. Weber

Support of Design Engineering Activity for a Systematic Improvement of Products ... 105
A. Albers, T. Alink

The STEP Standards in Semantic Web – A Way to Integrate the Product Development Chain 115
K. Schützer, A.A.A. Moura

Configuration instead of New Design Using Reference Product Structures ... 125
E. Nurcahya

Implications of Complexity in Early Stages of Innovation Processes for the Definition of Heuristic Engineering Methods ... 135
M. Weigt
Trends of Evolutions and Patent Analysis:
An Application in the Household Appliances Field................................. 145
A. Crotti, M. Ghitti, D. Regazzoni, C. Rizzi

Understanding the Link between Aesthetics
and Engineering in Product Design ... 155
R. Roy, P. Baguley, L. Reeve

Preliminary Study of Cognitive Model of Designer’s Creativity
by Using Formal Protocol Analysis .. 165
S. Yao, Y. Zeng

Results of an Industry Survey on the Application
of Dependability Oriented Design Methods ... 175
Th. Müller, K. Manga, M. Walther, J. Wallaschek

Holistic Methods in Product Development ... 185
H.-J. Franke

Requirements

A Holistic Approach for Integrated Requirements Modeling
in the Product Development Process .. 197
M. Maletz, J.-G. Blouin, H. Schnedl, D. Brisson, K. Zamazal

Multi-level Representation for Supporting
the Conceptual Design Phase of Modular Products 209
M. Germani, M. Mengoni, R. Raffaeli

Dependency of the Product Gestalt on Requirements
in Industrial Design Engineering ... 225
A. Götz, T. Maier

Synergy of Technical Specifications, Functional Specifications
and Scenarios in Requirements Specifications ... 235
J. Miedema, M. C. van der Voort, D. Lutters, F. J. A. M. van Houten

Modeling of Heterogeneous Systems in Early Design Phases 247
M. Reeßing, U. Döring, T. Brix
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement-oriented Configuration of Parallel Robotic Systems</td>
<td>259</td>
</tr>
<tr>
<td>C. Stechert, H.-J. Franke</td>
<td></td>
</tr>
<tr>
<td>A Scandinavian Model of Innovative Product Development</td>
<td>269</td>
</tr>
<tr>
<td>T.C. McAloone, M.M. Andreasen, P. Boelskifte</td>
<td></td>
</tr>
<tr>
<td>Collaborative Engineering</td>
<td></td>
</tr>
<tr>
<td>Toward a Framework for Effective Collaborative Product Development</td>
<td>279</td>
</tr>
<tr>
<td>M. Sadeghi, F. Noël, K. Hadj-Hamou</td>
<td></td>
</tr>
<tr>
<td>Scalable Product Development in a Collaborative Environment</td>
<td>291</td>
</tr>
<tr>
<td>G. Schuh, C. Nonn, M. Jung</td>
<td></td>
</tr>
<tr>
<td>A New Concept for Collaborative Product & Process Design within a</td>
<td>301</td>
</tr>
<tr>
<td>Human-oriented Collaborative Manufacturing Environment</td>
<td></td>
</tr>
<tr>
<td>D. Mavrikios, M. Pappas, V. Karabatsou, G. Chryssolouris</td>
<td></td>
</tr>
<tr>
<td>Towards a Framework for Managing Conceptual Knowledge in Distributed</td>
<td>311</td>
</tr>
<tr>
<td>and Collaborative R&D Projects</td>
<td></td>
</tr>
<tr>
<td>A. Vacher, D. Brissaud, S. Tichkiewitch</td>
<td></td>
</tr>
<tr>
<td>DEPNET: A Methodology for Identifying and Qualifying Dependencies</td>
<td>319</td>
</tr>
<tr>
<td>between Engineering Data</td>
<td></td>
</tr>
<tr>
<td>M. Z. Ouertani, K. Grebici, L. Gzara, E. Blanco, D. Rieu</td>
<td></td>
</tr>
<tr>
<td>Distributed Product Development in the Framework of Modern</td>
<td>331</td>
</tr>
<tr>
<td>Engineering Education</td>
<td></td>
</tr>
<tr>
<td>S. Consiglio, G. Seliger, S. Severengiz</td>
<td></td>
</tr>
<tr>
<td>Romanian Research Network for Integrated Product and Process</td>
<td>341</td>
</tr>
<tr>
<td>Engineering – INPRO</td>
<td></td>
</tr>
<tr>
<td>G. Draghici, A. Draghici</td>
<td></td>
</tr>
</tbody>
</table>
Complex Design, Mechatronics

Facing Multi-Domain Complexity in Product Development................. 351
U. Lindemann, M. Maurer

Using Evolutionary Algorithms to Support
the Design of Self-optimizing Mechatronic Systems 363
R. Radkowski, U. Frank, J. Gausemeier

Case Study of a MEMS Switch Supported
by a FBS and DFM Framework.. 377

Reverse Engineering

Digital Processing and Fusion of 3D Data from Emerging
Non-Contact 3D Measurement Technologies............................... 387
A. Fischer

3D Digitalization for Patrimonial Machines.................................... 397
F. Laroche, A. Bernard, M. Cotte

Using a Modified Failure Modes and Effects Analysis
within the Structured Design Recovery Framework......................... 409
R. J. Urbanic, W. H. ElMaraghy

Knowledge Reengineering for Reverse Engineering Purposes 421
Z. Weiss, M. Pankowski

Virtual Prototyping

Extended Virtual Prototyping.. 431
G. Höhne, S. Husung, E. Lotter

MagicMirror & FootGlove:
A New System for the Customized Shoe Try-on 441
S. Mottura, L. Greci, E. Travaini, G. Viganò, M. Sacco
Table of Contents

Contact Pressure Calculation Methodologies
in Aeronautic Gearboxes in the CAD Process 451
L. Zamponi, E. Mermoz, J.M. Linares

Product Design

Common Representation of Products and Services:
A Necessity for Engineering Designers
to Develop Product-Service Systems .. 463
N. Maussang, D. Brissaud, P. Zwolinski

Toward Design Interference Detection to Deal
with Complex Design Problems .. 473
T. Tomiyama, V. D’Amelio

About the Efficiency and Cost Reduction
of Parallel Mixed-Model Assembly Lines 483
S. Hazbany, I. Gilad, M. Shpitalni

The Application of a Statistical Design of Experiment for Quantitative
Analysis and Optimisation of Development Processes 493
F.-L. Krause, Chr. Kind, C. Biantoro

PLM

PLM Services in Practice .. 503
L. Lämmer, R. Bugow

Composite Applications Enabling Product Data Management
Applying SOA Principles and Software Factory Methods 513
Y. Bock

A Holistic, Methodical Approach to Evaluate
the PDMS-capability of Companies .. 521
J. Feldhusen, B. Gebhardt, M. Löwer

Lifecycle Information Model for Higher Order
Bifurcated Sheet Metal Products ... 531
R. Anderl, Z. Wu, Th. Rollmann, M. Kormann
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation-based Multiple Project Management in Engineering Design</td>
<td>543</td>
</tr>
<tr>
<td>T. Licht, L. Schmidt, C.M. Schlick, L. Dohmen, H. Luczak</td>
<td></td>
</tr>
<tr>
<td>Towards “The Timeless Way of Product Lifecycle Management”</td>
<td>555</td>
</tr>
<tr>
<td>J. Feldhusen, F. Bungert</td>
<td></td>
</tr>
<tr>
<td>Development of a Strategy Tool for Environmental Compliance Management</td>
<td>565</td>
</tr>
<tr>
<td>A. Dimache, L. Dimache, E. Zoldi, T. Roche</td>
<td></td>
</tr>
<tr>
<td>KBE</td>
<td></td>
</tr>
<tr>
<td>Software Engineering and Knowledge Engineering:</td>
<td></td>
</tr>
<tr>
<td>From Competition to Cooperation</td>
<td>575</td>
</tr>
<tr>
<td>S. Ammar-Khodja, N. Perry, A. Bernard</td>
<td></td>
</tr>
<tr>
<td>Applying KBE Technologies to the Early Phases of Multidisciplinary Product Design</td>
<td>587</td>
</tr>
<tr>
<td>A. Schneegans, F. Ehlermann</td>
<td></td>
</tr>
<tr>
<td>A Way to Manage CalculationEngineers’ Knowledge</td>
<td>597</td>
</tr>
<tr>
<td>C. Beylier, F. Pourroy, F. Villeneuve</td>
<td></td>
</tr>
<tr>
<td>On the Way to Knowledge Awareness in Early Design</td>
<td>607</td>
</tr>
<tr>
<td>Å. Ericson, M. Bergström, C. Johansson, T. Larsson</td>
<td></td>
</tr>
<tr>
<td>Enhanced B-Rep Graph-based Feature Sequences Recognition</td>
<td></td>
</tr>
<tr>
<td>Using Manufacturing Constraints</td>
<td>617</td>
</tr>
<tr>
<td>R. Harik, V. Capponi, W. Derigent</td>
<td></td>
</tr>
<tr>
<td>Facilitating Product Development with the Help of Knowledge Management: the McKnow Platform</td>
<td>629</td>
</tr>
<tr>
<td>J. Vertommen, J. D’hondt, J. Duflou</td>
<td></td>
</tr>
<tr>
<td>Integration of Learning Aptitude into Technical Systems</td>
<td>639</td>
</tr>
<tr>
<td>K. Paetzold</td>
<td></td>
</tr>
</tbody>
</table>
Science Keynotes

New Perspectives on Design and Innovation .. 649
L. Alting, C. Clausen, U. Jørgensen, Y. Yoshinaka

Future Trends in Product Lifecycle Management (PLM) 665
M. Abramovici

Modeling, Evaluation and Design of Product Quality
under Disturbances throughout the Total Product Life Cycle 675
F. Kimura

Closing Keynotes

Hype or Reality: Service Oriented Architecture
in Product Lifecycle Management –
How IBM Can Help You Achieve Innovation That Matters 685
C. An

The Future of Product Development in India 691
A. Chakrabarti

Virtual Product Development as an Engine for Innovation 703
F.-L. Krause, H. Jansen, Chr. Kind, U. Rothenburg